Computer Science ›› 2025, Vol. 52 ›› Issue (5): 220-226.doi: 10.11896/jsjkx.240600125
• Computer Graphics & Multimedia • Previous Articles Next Articles
HUANG Qian, SU Xinkai, LI Chang, WU Yirui
CLC Number:
[1]JIANG Y G,DAI Q,LIU W,et al.Human action recognition in unconstrained videos by explicit motion modeling [J].IEEE Transactions on Image Processing,2015,24(11):3781-3795. [2]GAUR U,ZHU Y,SONG B,et al.A “string of feature graphs” model for recognition of complex activities in natural videos[C]//Proceedings of the 2011 International Conference on Computer Vision.Barcelona,Spain,2011:2595-2602. [3]YAN S J,XIONG Y J,LIN D H.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:7444-7452. [4]SHI L,ZHANG Y F,CHENG J,et al.Two-stream adaptivegraph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:12018-12027. [5]YE F F,PU S L,ZHONG Q Y,et al.Dynamic gcn:Context-enriched topology learning for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia.Seattle,WA,USA,2020:55-63. [6]HAO X K,LI J,GUO Y C,et al.Hypergraph neural networkfor skeleton-based action recognition [J].IEEE Transactions on Image Processing,2021,30:2263-2275. [7]ZHU Y,CHEN W B,GUO G D.Fusing spatiotemporal features and joints for 3D action recognition[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition Workshops.Portland,OR,USA,2013:486-491. [8]WANG J,NIE X H,XIA Y,et al.Cross-view action modeling,learning,and recognition[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition(CVPR).2014:2649-2656. [9]HAMMONE D K,VANDERGHEYNST P,GRIBONVAL R.Wavelets on graphs via spectral graph theory[J].Applied and Computational Harmonic Analysis,2011,30(2):129-150. [10]TANG Y S,TIAN Y,LU J W,et al.Deep progressive reinforcement learning for skeleton-based action recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA,2018:5323-5332. [11]SHI L,ZHANG Y,CHENG J,et al.Skeleton-Based Action Re-cognition With Directed Graph Neural Networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:7904-7913. [12]LI M,CHEN S H,CHEN X,et al.Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:3590-3598. [13]CHENG K,ZHANG Y,HE X,et al.Skeleton-Based ActionRecognition with Shift Graph Convolutional Network[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA,2020:180-189. [14]CHEN Y X,ZHANG Z Q,YUAN C F,et al.Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal,QC,Canada,2021:13339-13348. [15]THAKKAR K,NARAYANAN P J.Part-based graph convolutional network for action recognition[C]//Proceedings of the Brit.Mach.Vis.Conf.(BMVC).2018:270-283. [16]HUANG L,HUANG Y,OUYANG W,et al.Part-Level GraphConvolutional Network for Skeleton-Based Action Recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:11045-11052. [17]LIU S Y,LV P,ZHANG Y Z,et al.Semi-dynamic hypergraph neural network for 3d pose estimation[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence.Yokohama,Yokohama,Japan,2021. [18]BAI S,ZHANG F H,TORR P H S.Hypergraph convolutionand hypergraph attention[J].Pattern Recognition,2021,110(1):1-8. [19]ZHOU Y X,LI C,CHENG Z Q,et al.Hypergraph Transformer for Skeleton-based Action Recognition [EB/OL].https://api.semanticscholar.org/CorpusID:253581243. [20]SHAHROUDY A,LIU J,NG T T,et al.Ntu rgb+d:A large scale dataset for 3d human activity analysis[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA,2016:1010-1019. [21]LIU J,SHAHROUDY A,PEREZ M,et al.Ntu rgb+d 120:A large-scale benchmark for 3d human activity understanding [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(10):2684-2701. [22]LI C,MAO Y C,HUANG Q,et al.Scale-Aware Graph Convolutional Network with Part-Level Refinement for Skeleton-Based Human Action Recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(6):4311-4324. [23]ZHU X W,HUANG Q,LI C,et al.Skeleton-Based Action Recognition with Combined Part-Wise Topology Graph Convolutional Networks[C]//Pattern Recognition and Computer Vision(PRCV 2023).2023:43-59. [24]ZHANG P F,LAN C L,ZENG W J,et al.Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA,2020:1109-1118. [25]LIU Z Y,ZHANG H W,CHEN Z H,et al.Disentangling andunifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA,2020:140-149. [26]SONG Y F,ZHANG Z,SHAN C F,et al.Richly activated graph convolutional network for robust skeleton-based action recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(5):1915-1925. [27]FENG D,WU Z C,ZHANG J,et al.Multi-scale spatial temporal graph neural network for skeleton-based action recognition [J].IEEE Access,2021,9:58256-58265. [28]WU C,WU X J,KITTLER J.Graph2net:Perceptually-enriched graph learning for skeleton-based action recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(4):2120-2132. [29]XU K L,YE F F,ZHONG Q Y,et al.Topology-aware convolutional neural network for efficient skeleton-based action recognition [C]//AAAI Conference on Artificial Intelligence.2021:2866-2874. [30]WEN Y H,GAO L,FU H B,et al.Motifgcns with local andnon-local temporal blocks for skeleton-based action recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(2):2009-2023. [31]HUANG Z X,QIN Y S,LIN X,et al.Motiondriven spatial and temporal adaptive high-resolution graph convolutional networks for skeleton-based action recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33(4):1868-1883. [32]LIN L,ZHANG J,LIU J.Actionlet-Dependent ContrastiveLearning for Unsupervised Skeleton-Based Action Recognition[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Vancouver,BC,Canada,2023:2363-2372. [33]SONG Y F,ZHANG Z,SHAN C F,et al.Constructing stronger and faster baselines for skeleton-based action recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(2):1474-1488. [34]HUA Y,WU W,ZHENG C,et al.Part Aware ContrastiveLearning for Self-Supervised Action Recognition[C]//Procee-dings of the Thirty-Second International Joint Conference on Artificial Intelligence.Macao,China,2023:855-863. [35]ZHU Y S,HAN H,YU Z T,et al.Modeling the relative visual tempo for self-supervised skeleton-based action recognition[C]//2023 IEEE/CVF International Conference on Computer Vision(ICCV).Paris,France,2023:13867-13876. |
[1] | ZHANG Jiaxiang, PAN Min, ZHANG Rui. Study on EEG Emotion Recognition Method Based on Self-supervised Graph Network [J]. Computer Science, 2025, 52(5): 122-127. |
[2] | ZHANG Lu, DUAN Youxiang, LIU Juan, LU Yuxi. Chinese Geological Entity Relation Extraction Based on RoBERTa and Weighted Graph Convolutional Networks [J]. Computer Science, 2024, 51(8): 297-303. |
[3] | YUAN Lining, FENG Wengang, LIU Zhao. Multi-channel Graph Convolutional Networks Enhanced by Label Propagation Algorithm [J]. Computer Science, 2024, 51(8): 304-312. |
[4] | LEI Yongsheng, DING Meng, SHEN Yao, LI Juhao, ZHAO Dongyue, CHEN Fushi. Action Recognition Model Based on Improved Two Stream Vision Transformer [J]. Computer Science, 2024, 51(7): 229-235. |
[5] | ZHANG Xiaoxi, LI Dongxi. Cancer Subtype Prediction Based on Similar Network Fusion Algorithm [J]. Computer Science, 2024, 51(6A): 230500006-7. |
[6] | HOU Lei, LIU Jinhuan, YU Xu, DU Junwei. Review of Graph Neural Networks [J]. Computer Science, 2024, 51(6): 282-298. |
[7] | LI Yilin, SUN Chengsheng, LUO Lin, JU Shenggen. Aspect-based Sentiment Classification for Word Information Enhancement Based on Sentence Information [J]. Computer Science, 2024, 51(6): 299-308. |
[8] | YUAN Rong, PENG Lilan, LI Tianrui, LI Chongshou. Traffic Flow Prediction Model Based on Dual Prior-adaptive Graph Neural ODE Network [J]. Computer Science, 2024, 51(4): 151-157. |
[9] |
YAN Wenjie, YIN Yiying.
Human Action Recognition Algorithm Based on Adaptive Shifted Graph Convolutional Neural Network with 3D Skeleton Similarity [J]. Computer Science, 2024, 51(4): 236-242. |
[10] | ZHANG Mingdao, ZHOU Xin, WU Xiaohong, QING Linbo, HE Xiaohai. Unified Fake News Detection Based on Semantic Expansion and HDGCN [J]. Computer Science, 2024, 51(4): 299-306. |
[11] | YUAN Jing, XIA Ying. Vehicle Trajectory Prediction Based on Spatial-Temporal Graph Attention Convolutional Network [J]. Computer Science, 2024, 51(12): 157-165. |
[12] | HUANG Haixin, WANG Yuyao, CAI Mingqi. Bottleneck Multi-scale Graph Convolutional Network for Skeleton-based Action Recognition [J]. Computer Science, 2024, 51(11A): 231000073-5. |
[13] | YANG Yufan, YUAN Liming, WANG Ke, LI Hongyi, LI Yixuan, YAO Yujia, WANG Jingyi. Grading Model for Diabetic Retinopathy Based on Graph Convolutional Network [J]. Computer Science, 2024, 51(11A): 231000042-5. |
[14] | PENG Guangchuan, WU Fei, HAN Lu, JI Yimu, JING Xiaoyuan. Fake News Detection Based on Cross-modal Interaction and Feature Fusion Network [J]. Computer Science, 2024, 51(11): 23-29. |
[15] | DUAN Xinran, WANG Mei, HAN Tianli, ZHOU Hongyu, GUO Junqi, JI Weixing, HUANG Hua. Perception and Analysis of Teaching Process Based on Video Understanding [J]. Computer Science, 2024, 51(10): 56-66. |
|