Computer Science ›› 2025, Vol. 52 ›› Issue (11): 123-130.doi: 10.11896/jsjkx.240800110
• Computer Graphics & Multimedia • Previous Articles Next Articles
YAN Zhilin, NIE Rencan
CLC Number:
| [1]MA J,MA Y,LI C.Infrared and visible image fusion methods and applications:A survey [J].Information fusion,2019,45:153-178. [2]LI C,LIANG X,LU Y,et al.RGB-T object tracking:Benchmark and baseline [J].Pattern Recognition,2019,96:106977. [3]KRISTAN M,MATAS J,LEONARDIS A,et al.The seventhvisual object tracking VOT2019 challenge results[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision Workshops.2019. [4]SHRINIDHI V,YADAV P,VENKATESWARAN N.IR andvisible video fusion for surveillance[C]//Proceedings of the 2018 International Conference on Wireless Communications,Signal Processing and Networking.IEEE,2018. [5]BAVIRISETTI D P,DHULI R.Two-scale image fusion of visible and infrared images using saliency detection [J].Infrared Physics & Technology,2016,76:52-64. [6]ZHANG X,MA Y,FAN F,et al.Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition [J].JOSA A,2017,34(8):1400-1410. [7]LI S,KANG X,HU J.Image fusion with guided filtering [J].IEEE Transactions on Image processing,2013,22(7):2864-2875. [8]PAJARES G,DE LA CRUZ J M.A wavelet-based image fusion tutorial [J].Pattern Recognition,2004,37(9):1855-1872. [9]ZHANG Z,BLUM R S.A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application [J].Proceedings of the IEEE,1999,87(8):1315-1326. [10]KONG W,ZHANG L,LEI Y.Novel fusion method for visible light and infrared images based on NSST-SF-PCNN [J].Infrared Physics & Technology,2014,65:103-112. [11]XIANG T,YAN L,GAO R.A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain [J].Infrared Physics & Technology,2015,69:53-61. [12]YANG B,LI S.Visual attention guided image fusion with sparse representation [J].Optik,2014,125(17):4881-4888. [13]LI S,YIN H,FANG L.Group-sparse representation with dictionary learning for medical image denoising and fusion [J].IEEE Transactions on Biomedical Engineering,2012,59(12):3450-3459. [14]BAVIRISETTI D P,XIAO G,LIU G.Multi-sensor image fusion based on fourth order partial differential equations[C]//Proceedings of the 2017 20th International Conference on Information Fusion.IEEE,2017. [15]ZHANG H,MA J.SDNet:A versatile squeeze-and-decomposi-tion network for real-time image fusion [J].International Journal of Computer Vision,2021,129(10):2761-2785. [16]XU H,MA J,JIANG J,et al.U2Fusion:A unified unsupervised image fusion network [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(1):502-518. [17]LI H,WU X J.DenseFuse:A fusion approach to infrared and visible images [J].IEEE Transactions on Image Processing,2018,28(5):2614-2623. [18]ZHANG Y,LIU Y,SUN P,et al.IFCNN:A general image fusion framework based on convolutional neural network [J].Information Fusion,2020,54:99-118. [19]ZHANG G,NIE R,CAO J.SSL-WAEIE:Self-supervised lear-ning with weighted auto-encoding and information exchange for infrared and visible image fusion [J].IEEE/CAA Journal of Automatica Sinica,2022,9(9):1694-1697. [20]WANG Z,WANG J,WU Y,et al.UNFusion:A unified multi-scale densely connected network for infrared and visible image fusion [J].IEEE Transactions on Circuits and Systems for Vi-deo Technology,2021,32(6):3360-3374. [21]MA J,ZHANG H,SHAO Z,et al.GANMcC:A generative adversarial network with multiclassification constraints for infrared and visible image fusion [J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-14. [22]MA J,XU H,JIANG J,et al.DDcGAN:A dual-discriminator conditional generative adversarial network for multi-resolution image fusion [J].IEEE Transactions on Image Processing,2020,29:4980-4995. [23]ZHOU H,WU W,ZHANG Y,et al.Semantic-supervised infrared and visible image fusion via a dual-discriminator generative adversarial network [J].IEEE Transactions on Multimedia,2021,25:635-648. [24]MA J,TANG L,FAN F,et al.SwinFusion:Cross-domain long-range learning for general image fusion via swin transformer [J].IEEE/CAA Journal of Automatica Sinica,2022,9(7):1200-1217. [25]WANG Z,CHEN Y,SHAO W,et al.SwinFuse:A residual swin transformer fusion network for infrared and visible images [J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-12. [26]TANG W,HE F,LIU Y,et al.DATFuse:Infrared and visible image fusion via dual attention transformer [J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33(7):3159-3172. [27]TANG L,YUAN J,MA J.Image fusion in the loop of high-level vision tasks:A semantic-aware real-time infrared and visible image fusion network [J].Information Fusion,2022,82:28-42. [28]CHEN X,HE K.Exploring simple siamese representation lear-ning[C]//Proceedings of the IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition.2021. [29]LIU Y,ZHU H,LIU M,et al.Rolling-Unet:Revitalizing MLP'sAbility to Efficiently Extract Long-Distance Dependencies for Medical Image Segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024. [30]MA J,ZHOU Y.Infrared and visible image fusion via gradientlet filter [J].Computer Vision and Image Understanding,2020,197:103016. [31]LU M,JIANG M,KONG J,et al.LDRepFM:a real-time end-to-end visible and infrared image fusion model based on layer decomposition and re-parameterization [J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-12. [32]LI H,XU T,WU X J,et al.Lrrnet:A novel representationlearning guided fusion network for infrared and visible images [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9):11040-11052. [33]NIE R,MA C,CAO J,et al.A total variation with joint norms for infrared and visible image fusion [J].IEEE Transactions on Multimedia,2021,24:1460-1472. [34]LI S,HONG R,WU X.A novel similarity based quality metric for image fusion[C]//Proceedings of the 2008 International Conference on Audio,Language and Image Processing.IEEE,2008. [35]XYDEAS C S,PETROVIC V.Objective image fusion performance measure [J].Electronics Letters,2000,36(4):308-309. [36]HAN Y,CAI Y,CAO Y,et al.A new image fusion performancemetric based on visual information fidelity [J].Information Fusion,2013,14(2):127-135. |
| [1] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [2] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [3] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [4] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [5] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [6] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [7] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [8] | DING Zhengze, NIE Rencan, LI Jintao, SU Huaping, XU Hang. MTFuse:An Infrared and Visible Image Fusion Network Based on Mamba and Transformer [J]. Computer Science, 2025, 52(8): 188-194. |
| [9] | YANG Feixia, LI Zheng, MA Fei. Research on Hyperspectral Image Super-resolution Methods Based on Tensor Ring SubspaceSmoothing and Graph Regularization [J]. Computer Science, 2025, 52(8): 240-250. |
| [10] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [11] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [12] | LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134. |
| [13] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
| [14] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
| [15] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
|
||