Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240800111-11.doi: 10.11896/jsjkx.240800111
• Intelligent Computing • Previous Articles Next Articles
KA Zuming, ZHAO Peng, ZHANG Bo, FU Xiaoning
CLC Number:
[1]GAO Y,SHENG T,XIANG Y Y,et al.Chat-rec:Towards interactive and explainable llms augmented recommender system[J].2003. [2]CHEN J,MA L,LI X,et al.Knowledge grap hcompletion mo-dels are few-shot learners:An empirical study of relation labeling in e-commerce with llms[J].arXiv:2305.09858,2023. [3]CHEN X,FAN W,CHEN J,et al.Fairly adaptive negative sampling for recommendations[C]//Proceedings of the ACM Web Conference.2023:3723-3733. [4]QIN L,WU W S,LIU D,et al.Autonomous planning and processing framework for complex tasks based on large language models[J].Acta Automatica Sinica,2024,50(4):862-872. [5]FAN W,ZHAO X,CHEN X,et al.A comprehensive survey on trustworthy recommender systems[J].arXiv:2209.10117,2022. [6]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [7]FAN W,DERR T,MA Y,et al.Deep adversarial social recommendation[C]//28th International Joint Conference on Artificial Intelligence(IJCAI-19).International Joint Conferences on Artificial Intelligence,2019:1351-1357. [8]ZHENG L,NOROOZI V,YU P S.Joint deep modeling of usersand items using reviews for recommendation[C]//Proceedings of the tenth ACM International Conference on Web Search and Data Mining.2017:425-434. [9]ZHANG S,YAO L,SUN A,et al.Deep learning based recommender system:A survey and new perspectives[J].ACM Computing Surveys(CSUR),2019,52(1):1-38. [10]FAN W,LIU C,LIU Y,et al.Generative diffusion models on graphs:Methods and applications[J].arXiv:2302.02591,2023. [11]HIDASI B,KARATZOGLOU A,BALTRUNAS L,et al.Session-based recommendations with recurrent neural networks[J].arXiv:1511.06939,2015. [12]FAN W,MA Y,YIN D,et al.Deep social collaborative filtering[C]//Proceedings of the 13th ACM Conference on Recommender Systems.2019:305-313. [13]FAN W,MA Y,LI Q,et al.Graph neural networks for social recommendation[C]//The World Wide Web Conference.2019:417-426. [14]QIU Z,WU X,GAO J,et al.U-bert:Pre-training user representations for improved recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:4320-4327. [15]BROWN T,MANN B,RYDER N,et al.Language models are few-shot learners[J].NeurIPS,2020. [16]ZHOU L,PALANGI H,ZHANG L,et al.Unified vision-lan-guage pre-training for image captioning and vqa[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:13041-13049. [17]LI J,LIU Y,FAN W,et al.Empowering molecule discovery for mole-cule-caption translationwith large language models:A chatgpt perspective[J].a-Xiv:2306.06615,2023. [18]CHEN Z,MAO H,LI H,et al.Exploring the potential of large language models(llms) in learning on graphs[J].arXiv:2307.03393,2023. [19]ZHAO W X,ZHOU K,LI J,et al.A survey of large language models[J].arXiv:2303.18223,2023. [20]ZHANG J,XIE R,HOU Y,et al.Recommendation as instruction following:A large language model empowered recommendation approach[J].arXiv:2305.07001,2023. [21]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep b-idirectional transformers for language understanding[J].arXiv:1810.04805,2018. [22]RADFORD A,NARASIMHAN K,SALIMANS T,et al. Improving Language Understanding by Generative Pre-Training [OL].https://openai.com/index/language-unsupervised/. [23]RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].The Journal of Machine Learning Research,2020,21(1):5485-5551. [24]VASWANI A,SHAZEER N,PARMAR N,et al.At-tention is all you need[J].Advances in Neural Information Processing Systems,2017,30:5998-6008. [25]ZHANG Z,ZHANG G,HOU B,et al.Certified robustness for large language-models with self-denoising[J].arXiv:2307.07171,2023 [26]THOPPILAN R,DE FREITAS D,HALL J,et al.Lamda:Language models for dialog applications[J].arXiv:2201.08239,2022. [27]CHOWDHERY A,NARANG S,DEVLIN J,et al.Palm:Scaling language modeling with pathways[J].arXiv:2204.02311,2022. [28]CHANG W L,LI Z,LIN Z,et al.Vicuna:An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality [C/OL]//https://vicuna.lmsys.org(accessed 14 April 2023).2023. [29]KIM H J,CHO H,KIM J,et al.Self-generated in-context lear-ning:Leveraging auto-regressive language models as a demons-tration generator[J].arXiv:2206.08082,2022. [30]RUBIN O,HERZIG J,BERANT J.Learning to retrieveprompts for incontext learning[J].arXiv:2112.08633,2021. [31]WEI J,WANG X,SCHUURMANS D,et al.Ch-ain of thought prompting elicits reasoning in large language models[J].arXiv:2201.11903,2022. [32]WANG X,WEI J,SCHUURMANS D,et al.Self-consistencyimproves c-hain of thought reasoning in language-models[J].arXiv:2203.11171,2022. [33]ZELIKMAN E,WU Y,MU J,et al.Star:Bootstrapping reaso-ning with reasoning[J].Advances in Neural Information Proces-sing Systems,2022,35:15476-15488. [34]FEI H,LI B,LIU Q,et al.Reasoning implicit sentiment withchain-of-thought prompting[J].arXiv:2305.11255,2023. [35]JIN Z,LU W.Tab-cot:Zero-shot tabular chain of thought[J].arXiv:2305.17812,2023. [36]KASNECI E,SEßLER K,KÜCHEMANN S,et al.Chatgpt for good? on opportunities and challenges of large language models for education[J].Learning and Individual Differences,2023,103:102274. [37]WU S,IRSOY O,LU S,et al.Bloomberggpt:A large language model for finance[J].arXiv:2303.17564,2023. [38]CUI Z,MA J,ZHOU C,et al.M6-rec:Generative pretrained language models are open-ended recommender systems[J].arXiv:2205.08084,2022. [39]CUI Z Y,MA J X,ZHOU C,et al.M6-rec:Generative pretrainedlanguage models are open-ended recommender systems[J].ar-Xiv:2205.08084,2022. [40]GENG S,LIU S,FU Z,et al.Rec-ommendation as language processing(rlp):A unified pretrain,personalized prompt & predict paradigm(p5)[C]//Proceedings of the 16th ACM Conference on Recommender Systems.2022:299-315. [41]WANG X,ZHOU K,WEN J R,et al.To-wards unified conversational recommender systems via knowledge-enhanced prompt learning[C]//Proceedings of the 28th ACM SIGKDD Confe-rence on Knowledge Discovery and Data Mining.2022:1929-1937. [42]DENG Y,ZHANG W,XU W,et al.A unified multi-task lear-ning framework for multi-goal conversational recommender systems[J].ACM T ransactions on Information Systems,2023,41(3):1-25. [43] SHENG B,GUAN Z Y,LEE L L,et al.diabetes managementbased on the big language model:potential and prospect [J].Science Bulletin,2024,69(5):583-588. [44]CHEN X,ZHANG Y F,QIN Z.Dy-namic explainable recommendation based on neural at-tentive models[C]//AAAI.2019:53-60. [45]KANG W C,MCAULEY J L.Self-attentive sequential recom-mendation[C]//ICDM.IEEE,2018:197-206. [46]ZHANG Y F,AI Q Y,CHEN X,et al.Joint representationlearning for top-n recommendation with heterogeneous information sources[C]//CIKM.2017:1449-1458. [47]HE X N,LIAO L Z,ZHANG H W,et al.Neural Collaborative Filtering[C]//WWW.ACM,2017:173-182. [48]SUN F,LIU J,WU J,et al.BERT4Rec:Sequen-tial recommendation with bidirectional encoder repre-sentations from transformer[C]//CIKM.ACM,2019:1441-1450. [49]TANG J X,WANG K.Personalized top-n sequential recommendationvia convolutional sequence embedding[C]//WSDM.ACM,2018:565-573 [50]WANG X,HE X N,WANG M,et al.Neural Graph Collaborative Filtering[C]//SIGIR.ACM,2019:165-174. [51]HE X N,DENG K,WANG X,et al.Lightgcn:Simpli-fying and powering graph convolution network for recommendation[C]//SIGIR.2020:639-648. [52]DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Association for Computational Linguistics.NAACL-HLT(1),2019:4171-4186. [53]PENHA G,HAUFF C.What does BERT know about books,movies and mu-sic? probing BERT for conversational recommendation[C]//RecSys.ACM,2020:388-397. [54]BROWN T B,MANN B,NICKRYDER,et al.Language modelsare fewshot learners[C]//NeurIPS.2020. [55]OUYANG L,WU J,JIANG X,et al.Training lan-guage models to follow instructions with human feed-back[C]//NeurIPS.2022. [56]LIU J L,LIU C,LV R J,et al.Is chatgpt a good recommender? A preliminary study[J].CoRR,abs/2304.10149,2023. [57]DAI S B,SHAO N L,ZHAO H Y,et al.Uncovering chatgpt’s capabilities inrecom-mender systems[J].CoRR,abs/2305.02182,2023. [58]DAI D M,SUN Y T,DONG L,et al.Why can GPT learn in-context? language models secretly perform gradient descent as meta-optimizers[J].CoRR,abs/2212.10559,2022. [59]WANG W J,LIN X Y,FENG F L,et al.Generative recommendation:Towards next-generation recommender paradigm.CoRR[J].abs/2304.03516,2023. [60] LIU Y Q,WANG Y,SUN L C,et al.Rec-GPT4V:Multimodal Recommendation with Large Vision-Language Models[J].arX-iv:2402.08670.2024. [61]HUA W Y,XU S Y,GE Y Q,et al.How to I-ndex Item IDs for Recommendation Foundation Models[J].arXiv:2305.06569,2023. [62]LI L,ZHANG Y F,LIU D G,et al.Large language models for generative recommendation:A survey and visionary discussions[J].arXiv:2309.01157,2023. [63]BAO K Q,ZHANG J Z,WANG W J,et al.A bi-step grounding paradigm for large language models in recommendation systems[J].arXiv:2308.08434,2023. [64]CHU Z X,HAO H Y,OUYANG X,et al.Leveraging largelanguage models for pre-trained recommender systems[J].ar-Xiv:2308.10837,2023. [65]RAJPUT S,MEHTA N,SINGH A,et al.Recommender Systems with Generative Retrieval[C]//NeurIPS.Curran Asso-ciates,Inc,2023. [66]LIN X Y,WANG W J,LI Y Q,et al.A multi-facet paradigm to bridge large language model and recom-mendation[J].arXiv:2310.06491,2023. [67]WEI T X,JIN B W,LI R R,et al.Towards Universal Multi-Modal Personalization:A Language Model Empowered Generative Paradigm[C]//ICLR.2024. [68]XU Y Y,WANG W J,FENG F X,et al..DiFashion:Towards Personalized Outfit Generation[C]//SIGIR.2024 [69]LI Z L,JI J C,GE Y Q,et al.PAP-REC:Personalized Auto-ma-tic Prompt for Recommendation Language Model[J].arXiv:2402.00284,2024. [70]GENG S J,TAN J T,LIU S C,et al.VIP5:Towards Multimodal Foundation Models for Recommendation[C]//EMNLP.2023:9606-9620. [71]ZHENG B W,HOU Y P,LU H Y,et al.Adapting large language models by integrating collabora-tivesemantics for recommendation[J].arXiv:2311.09049,2023. [72]ZHANG Y H,DING H,SHUI Z R,et al.Language models as recommender systems:Evaluations and limi-tations[C]//2021. [73]WANG L, LIM E P.Zero-Shot Next-Item Recommendationusing Large Pretrained Language Models[J].arXiv:2304.03153,2023. [74]LUO S C,HE B W,ZHAO H H,et al.RecRanker:Instruction Tuning Large Language Model as Ranker for Top-k Recommendation[J].arXiv:2312.16018,2023. [75]ZHANG J J,XIE R B,HOU Y P,et al.Recommendation as instruction following:A large language model empowered recommendation approach[J].arXiv:2305.07001,2023. [76]LIU Y Q,WANG Y,SUN L C,et al.Rec-GPT4V:Multimodal Recommendation with Large Vision-Language Models[J].ar-Xiv:2402.08670,2024. [77]GU Z,HE X,YU P,et al.Automatic quantitative stroke severity assessment based on Chinese clinical named entity recognition with domain adaptive pretrained large language model[J].Artificial Intelligence In Medicine,2024,150:102822. [78] LI N.Exploration of the Application of Big Language Model in Financial Shared Center [J].China Agricultural Accounting,2024,34(6):88-90. [79]LU M F.Research on the Application Principles,Challenges,and Implementation Paths of Large Language Models in the Financial Sector [J/OL].Journal of Chongqing Technology and Business University(Social Sciences Edition),1-13.[2400-04-08]. [80]LEE G G,LATIF E,WU X,et al.Applying large language mo-dels and chain-of-thought for automatic scoring[J].Computers and Education:Artificial Intelligence,2024,6:100213. |
[1] | GUO Zhiqiang, GUAN Donghai, YUAN Weiwei. Word-Character Model with Low Lexical Information Loss for Chinese NER [J]. Computer Science, 2024, 51(8): 272-280. |
[2] | LIU Yumeng, ZHAO Yijing, WANG Bicong, WANG Chao, ZHANG Baomin. Advances in SQL Intelligent Synthesis Technology [J]. Computer Science, 2024, 51(7): 40-48. |
[3] | YANG Zhenzhen, WANG Dongtao, YANG Yongpeng, HUA Renyu. Multi-embedding Fusion Based on top-N Recommendation [J]. Computer Science, 2024, 51(7): 140-145. |
[4] | YANG Binxia, LUO Xudong, SUN Kaili. Recent Progress on Machine Translation Based on Pre-trained Language Models [J]. Computer Science, 2024, 51(6A): 230700112-8. |
[5] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
[6] | LI Minzhe, YIN Jibin. TCM Named Entity Recognition Model Combining BERT Model and Lexical Enhancement [J]. Computer Science, 2024, 51(6A): 230900030-6. |
[7] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[8] | LI Bin, WANG Haochang. Implementation and Application of Chinese Grammatical Error Diagnosis System Based on CRF [J]. Computer Science, 2024, 51(6A): 230900073-6. |
[9] | ZHANG Mingdao, ZHOU Xin, WU Xiaohong, QING Linbo, HE Xiaohai. Unified Fake News Detection Based on Semantic Expansion and HDGCN [J]. Computer Science, 2024, 51(4): 299-306. |
[10] | TU Xin, ZHANG Wei, LI Jidong, LI Meijiao , LONG Xiangbo. Study on Automatic Classification of English Tense Exercises for Intelligent Online Teaching [J]. Computer Science, 2024, 51(4): 353-358. |
[11] | ZHENG Cheng, SHI Jingwei, WEI Suhua, CHENG Jiaming. Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-basedSentiment Analysis [J]. Computer Science, 2024, 51(3): 205-213. |
[12] | QIN Xianping, DING Zhaoxu, ZHONG Guoqiang, WANG Dong. Deep Learning-based Method for Mining Ocean Hot Spot News [J]. Computer Science, 2024, 51(11A): 231200005-10. |
[13] | CHEN Jing, ZHOU Gang, LI Shunhang, ZHENG Jiali, LU Jicang, HAO Yaohui. Review of Fake News Detection on Social Media [J]. Computer Science, 2024, 51(11): 1-14. |
[14] | LIU Feng, LIU Yaxuan, CHAI Xinyu, JI Haohan, ZHENG Zhixing. Computational Perception Technologies in Intelligent Education:Systematic Review [J]. Computer Science, 2024, 51(10): 10-16. |
[15] | FENG Jun, LI Kaixuan, GAO Zhizezhang, HUANG Li, SUN Xia. Survey of Research on Automated Grading Algorithms for Subjective Questions [J]. Computer Science, 2024, 51(10): 33-39. |
|