Computer Science ›› 2025, Vol. 52 ›› Issue (2): 299-309.doi: 10.11896/jsjkx.240900101
• Computer Network • Previous Articles Next Articles
LIN Zheng1, LIU Sicong1, GUO Bin1, DING Yasan1, YU Zhiwen1,2
CLC Number:
[1]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [2]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [3]HAN S,LIU X,DALLY W J.Efficient Methods and Hardware for Deep Learning[J].Proceedings of the IEEE,2017,105(12):2295-2329. [4]MITTAL S.A Survey of Techniques for Architecting Processor Components Using Domain-Specific Hardware Accelerators[J].Sustainable Computing:Informatics and Systems,2016,9:17-26. [5]HOROWITZ M.Computing's energy problem(and what we can do about it)[C]//2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers(ISSCC).2014:10-14. [6]CHEN Y,LI T,CHEN Y,et al.Understanding the energy efficiency of deep learning models:An experimental study[C]//Proceedings of the 2018 IEEE International Symposium on Workload Characterization.2018:11-21. [7]YANG T J,CHEN Y H,EMER J,et al.A method to estimate the energy consumption of deep neural networks[C]//Procee-dings of the 51st Asilomar Conference on Signals,Systems,and Computers.Pacific Grove,USA:2017:1916-1920. [8]RODRIGUES C F,RILEY G,LUJÁN M.SyNERGY:An energy measurement and prediction framework for Convolutional Neural Networks on Jetson TX1[C]//Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications(PDPTA).The Steering Committee of The World Congress in Computer Science,Computer Engineering and Applied Computing(WorldComp),2018:375-382. [9]RODRIGUES C F,RILEY G,LUJÁN M.Energy predictivemodels for convolutional neural networks on mobile platforms[J].arXiv:2004.05137,2020. [10]DAI X,ZHANG P,WU B,et al.Chamnet:Towards efficient network design through platform-aware model adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:11398-11407. [11]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].arXiv:1503.02531,2015. [12]ROMERO A,BALLAS N,KAHOU S E,et al.FitNets:Hints for thin deep nets[J].arXiv:1412.6550,2015. [13]HAN S,POOL J,TRAN J,et al.Learning both weights andconnections for efficient neural networks[C]//Advances in Neural Information Processing Systems.2015:1135-1143. [14]MOLCHANOV P,TYREE S,KARRAS T,et al.Pruning convolutional neural networks for resource efficient inference[J].arXiv:1611.06440,2017. [15]COURBARIAUX M,BENGIO Y,DAVID J.Binary Connect:Training deep neural networks with binary weights during propagations[C]//Advances in Neural Information Processing Systems.2015:3123-3131. [16]SAINATH T N,KINGSBURY B,SINDHWANI V,et al.Low-rank matrix factorization for deep neural network training with high-dimensional output targets[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.2013:6655-6659. [17]DENTON E L,ZAREMBA W,BRUNA J,et al.Exploiting linear structure within convolutional networks for efficient evaluation[C]//Advances in Neural Information Processing Systems.2014:1269-1277. [18]ZHANG X,LI H,HE Y,et al.Co-optimizing performance and energy efficiency of DAG scheduling on heterogeneous systems[C]//Proceedings of the 2018 IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing.2018:381-390. [19]LI X,MA H,CHEN Y.Optimizing operator parallelism forgraph neural networks on GPUs[C]//Proceedings of the 2019 IEEE/ACM International Conference on Parallel Architectures and Compilation Techniques.2019:303-315. [20]WEI J,CAO T,CAO S,et al.NN-Stretch:Automatic NeuralNetwork Branching for Parallel Inference on Heterogeneous Multi-Processors[C]//Proceedings of the 21st Annual International Conference on Mobile Systems,Applications and Ser-vices.2023:70-83. [21]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [22]CHENG Y,WANG D,ZHOU P,et al.Model compression and acceleration for deep neural networks:The principles,progress,and challenges[J].IEEE Signal Processing Magazine,2018,35(1):126-136. [23]JIA F,ZHANG D,CAO T,et al.CoDL:efficient CPU-GPU co-execution for deep learning inference on mobile devices[C]//MobiSys.2022:209-221. |
[1] | XIA Zhuoqun, ZHOU Zihao, DENG Bin, KANG Chen. Security Situation Assessment Method for Intelligent Water Resources Network Based on ImprovedD-S Evidence [J]. Computer Science, 2025, 52(6A): 240600051-6. |
[2] | MA Zhaoyang, CHEN Juan, ZHOU Yichang, WU Xianyu, GAO Pengfei, RUAN Wenhao, ZHAN Haoming. TS3:Energy-Efficiency-First Optimal Thread Number Search Algorithm Based on Specific Starting Point Classification [J]. Computer Science, 2025, 52(5): 67-75. |
[3] | ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161. |
[4] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
[5] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[6] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
[7] | ZHANG Lei, WU Wenzhe, BAI Xueyuan. Go Chessboard Recognition Based on Light-YOLOv8 [J]. Computer Science, 2024, 51(11A): 230900037-7. |
[8] | REN Shuyao, SONG Jiangling, ZHANG Rui. Early Screening Method for Depression Based on EEG Signal [J]. Computer Science, 2023, 50(11A): 221100139-6. |
[9] | GAO Yan-lu, XU Yuan, ZHU Qun-xiong. Predicting Electric Energy Consumption Using Sandwich Structure of Attention in Double -LSTM [J]. Computer Science, 2022, 49(3): 269-275. |
[10] | QIAN Dong-wei, CUI Yang-guang, WEI Tong-quan. Secondary Modeling of Pollutant Concentration Prediction Based on Deep Neural Networks with Federal Learning [J]. Computer Science, 2022, 49(11A): 211200084-5. |
[11] | FAN Hong-jie, LI Xue-dong, YE Song-tao. Aided Disease Diagnosis Method for EMR Semantic Analysis [J]. Computer Science, 2022, 49(1): 153-158. |
[12] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
[13] | ZHENG Zhe, HU Qing-hao, LIU Qing-shan, LENG Cong. Quantizing Weights and Activations in Generative Adversarial Networks [J]. Computer Science, 2020, 47(5): 144-148. |
[14] | XIAO Rui, JIANG Jia-qi, ZHANG Yun-chun. Study on Semantic Topology and Supervised Word Sense Disambiguation of Polysemous Words [J]. Computer Science, 2019, 46(11A): 13-18. |
[15] | HAN Jia-lin, WANG Qi-qi, YANG Guo-wei, CHEN Jun, WANG Yi-zhong. SSD Network Compression Fusing Weight and Filter Pruning [J]. Computer Science, 2019, 46(11): 272-276. |
|