Computer Science ›› 2025, Vol. 52 ›› Issue (11): 141-149.doi: 10.11896/jsjkx.240900113
• Computer Graphics & Multimedia • Previous Articles Next Articles
DING Yuanbo, BAI Lin, LI Taoshen
CLC Number:
| [1]GUPTA S,MALIK J.Visual semantic role labeling[J].arXiv:1505.04474,2015. [2]SADEGHI M A,FARHADI A.Recognition using visual phrases[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE,2011:1745-1752. [3]WAN B,ZHOU D,LIU Y,et al.Pose-aware multi-level feature network for human object interaction detection[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.2019:9469-9478. [4]LI Y L,ZHOU S,HUANG X,et al.Transferable interactive-ness knowledge for human-object interaction detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3585-3594. [5]YAN Z X,BAI L,LI T S.Lightweight human pose estimation based on self-knowledge distillation and convolution compression[J].Journal of Chinese Computer Systems,2024,45(2):461-469. [6]DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2005:886-893. [7]LOWE D G.Distinctive image features from scale- invariantkeypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [8]GAO C,ZOU Y,HUANG J B.ican:Instance centric attentionnetwork for human-object interaction detect-ion[J].arXiv:1808.10437,2018. [9]GKIOXARI G,GIRSHICK R,DOLLÁR P,et al.Detecting and recognizing human-object interactions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8359-8367. [10]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.2015. [11]LI B Z,ZHANG J,WANG B L,et al.Human-Object Interaction Recognition Integrating Multi-level Visual Features [J].Computer Science,2022,49(S2):643-650. [12]LIN X,ZOU Q,XU X.Action-guided attention mining and relation reasoning network for human-object interaction detection[C]//Proceedings of the 29th International Conference on International Joint Conferences on Artificial Intelligence.2021:1104-1110. [13]SUN X,HU X,REN T,et al.Human object interaction detection via multi-level conditioned network[C]//Proceedings of the 2020 International Conference on Multimedia Retrieval.2020:26-34. [14]QI S,WANG W,JIA B,et al.Learning human-object interactions by graph parsing neural networks[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:401-417. [15]WANG H,ZHENG W,YINGBIAO L.Contextual heterogeneous graph network for human-object interaction detection[C]//Computer Vision-ECCV 2020:16th European Conference.Cham:Springer,2020:248-264. [16]ULUTAN O,IFTEKHAR A S M,MANJUNATH B S.Vsg-net:Spatial attention network for detecting human object interactions using graph convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:13617-13626. [17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017. [18]ZOU C,WANG B,HU Y,et al.End-to-end human object interaction detection with hoi transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11825-11834. [19]TAMURA M,OHASHI H,YOSHINAGA T.Qpic:Query-based pairwise human-object interaction detection with image-wide contextual informa-tion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10410-10419. [20]ZHOU P,CHI M.Relation parsing neural network for human-object interaction detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:843-851. [21]LIU H,MU T J,HUANG X.Detecting human—object interaction with multi-level pairwise feature network[J].Computa-tional Visual Media,2021,7:229-239. [22]CHEN M,LIAO Y,LIU S,et al.Reformulating hoi detection as adaptive set prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:9004-9013. [23]KIM B,LEE J,KANG J,et al.Hotr:End-to-end human-object interaction detection with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:74-83. [24]PARKJ,PARK J W,LEE J S.Viplo:Vision transformer based pose-conditioned self-loop graph for human-object interaction detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:17152-17162. [25]MA S,WANG Y,WANG S,et al.Fgahoi:Fine-grained anchors for human-object interaction detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(4):2415-2429. [26]WU M,GU J,SHEN Y,et al.End-to-end zero-shot hoi detection via vision and language knowledge distillation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:2839-2846. [27]RADFORD A,KIM J W,HALLACY C,et al.Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning.PMLR,2021:8748-8763. |
| [1] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [2] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [3] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [4] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [5] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [6] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [7] | PENG Jiao, HE Yue, SHANG Xiaoran, HU Saier, ZHANG Bo, CHANG Yongjuan, OU Zhonghong, LU Yanyan, JIANG dan, LIU Yaduo. Text-Dynamic Image Cross-modal Retrieval Algorithm Based on Progressive Prototype Matching [J]. Computer Science, 2025, 52(9): 276-281. |
| [8] | GAO Long, LI Yang, WANG Suge. Sentiment Classification Method Based on Stepwise Cooperative Fusion Representation [J]. Computer Science, 2025, 52(9): 313-319. |
| [9] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [10] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [11] | LIU Jian, YAO Renyuan, GAO Nan, LIANG Ronghua, CHEN Peng. VSRI:Visual Semantic Relational Interactor for Image Caption [J]. Computer Science, 2025, 52(8): 222-231. |
| [12] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [13] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
| [14] | ZHUANG Jianjun, WAN Li. SCF U2-Net:Lightweight U2-Net Improved Method for Breast Ultrasound Lesion SegmentationCombined with Fuzzy Logic [J]. Computer Science, 2025, 52(7): 161-169. |
| [15] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
|
||