Computer Science ›› 2025, Vol. 52 ›› Issue (7): 161-169.doi: 10.11896/jsjkx.240500134
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZHUANG Jianjun1,2, WAN Li1
CLC Number:
[1]SIEGEL R L,KRATZER T B,GIAQUINTO A N,et al.Cancer statistics[J].CA:A Cancer Journal of Clinicians,2025,75(1):10. [2]MAHAJAN V,VENUGOPAL V.Audit of artificial intelligence algorithms and its impact in relieving shortage of specialist doctors[M]//Artificial Intelligence:Applications in Healthcare Delivery.2020:207-221. [3]LYU W Q.Medical artificial intelligence based on fuzzy logic:Opening the dimension of morality[J].Chinese Journal of Medical Ethics,2024,37(1):32-38. [4]KERAMIDAS E G,IAKOVIDIS D K,MAROULIS D,et al.Efficient and effective ultrasound image analysis scheme for thyroid nodule detection[C]//ICIAR 2007.Berlin:Springer,2007:1052-1060. [5]HUANG Y L,CHEN D R.Watershed segmentation for breast tumor in 2-D sonography[J].Ultrasound in Medicine and Biology,2004,30(5):625-632. [6]JIANG P,PENG J,ZHANG G,et al.Learning-based automatic breast tumor detection and segmentation in ultrasound images[C]//2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).IEEE,2012:1587-1590. [7]HUANG Q H,LEE S Y,LIU L Z,et al.A robust graph-basedsegmentation method for breast tumors in ultrasound images[J].Ultrasonics,2012,52(2):266-275. [8]SHAN J,CHENG H D,WANG Y.A novel segmentation me-thod for breast ultrasound images based on neutrosophic l-means clustering[J].Medical Physics,2012,39(9):5669-5682. [9]ABDEL M,MELENDEZ J,MORENO A,et al.Breast tumorclassification in ultrasound images using texture analysis and super-resolution methods[J].Engineering Applications of Artificial Intelligence,2017,59:84-92. [10]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [11]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016:770-778. [12]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [13]ZHOU T,DONG Y L,HUO B Q,et al.U-Net and its applications in medical image segmentation:a review[J].Journal of Image and Graphics,2021,26(9):2058-2077. [14]BYRA M,JAROSIK P,SZUBERT A,et al.Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network[J].Biomedical Signal Processing and Control,2020,61:102027. [15]HUANG R,LIN M,DOU H,et al.Boundary-rendering network for breast lesion segmentation in ultrasound images[J].Medical Image Analysis,2022,80:102478. [16]ZHANG X F,ZHANG S,ZHANG D H,et al.Group Attention-based Medical Image Segmentation Model[J].Journal of Image and Graphics,2023,28(10):3231-3242. [17]CHEN X,LIU Q,DENG X B,et al.Enhanced Network for Ultrasound Breast Tumor Segmentation Based on U-Net[J].Computer Engineering and Applications,2022,58(22):219-228. [18]BAI X F,MA Y N,WANG W J.Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion[J].Computer Science,2023,50(3):199-207. [19]PENG Y T,LIANG F M.Tumor segmentation method forbreast ultrasound images incorporating CNN and VIT[J].CAAI Transactions on Intelligent Systems,2024,19(3):556-564. [20]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [21]VALANARASUJ M J,PATEL V M.Unext:Mlp-based rapid medical image segmentation network[C]//International Confe-rence on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2022:23-33. [22]WANG A,CHEN H,LIN Z,et al.Repvit:Revisiting mobile cnn from vit perspective[J].arXiv:2307.09283,2023. [23]QIN X,ZHANG Z,HUANG C,et al.U2-Net:Going deeperwith nested U-structure for salient object detection[J].Pattern Recognition,2020,106(1):1-12. [24]DENG Y,REN Z,KONG Y,et al.A hierarchical fused fuzzy deep neural network for data classification[J].IEEE Transactions on Fuzzy Systems,2016,25(4):1006-1012. [25]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [26]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015. [27]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [28]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:3-19. [29]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722. [30]AL-DHABYANI W,GOMAA M,KHALED H,et al.Dataset of breast ultrasound images[J].Data in Brief,2020,28:104863. [31]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [32]CHEN J,LU Y,YU Q,et al.Transunet:Transformers makestrong encoders for medical image segmentation[J].arXiv:2102.04306,2021. [33]WANG A,CHEN H,LIN Z,et al.Repvit:Revisiting mobile cnn from vit perspective[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:15909-15920. |
[1] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
[2] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
[3] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
[4] | KONG Yinling, WANG Zhongqing, WANG Hongling. Study on Opinion Summarization Incorporating Evaluation Object Information [J]. Computer Science, 2025, 52(7): 233-240. |
[5] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
[6] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[7] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[8] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[9] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
[10] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[11] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
[12] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[13] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[14] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[15] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
|