Computer Science ›› 2025, Vol. 52 ›› Issue (3): 104-111.doi: 10.11896/jsjkx.240700041

• 3D Vision and Metaverse • Previous Articles     Next Articles

3D Object Detection with Dynamic Weight Graph Convolution

LI Zongmin, RONG Guangcai, BAI Yun, XU Chang , XIAN Shiyang   

  1. Qingdao Institute of Software,College of Computer Science and Technology,China University of Petroleum(East China),Qingdao,Shandong 266580,China
  • Received:2024-07-08 Revised:2024-09-09 Online:2025-03-15 Published:2025-03-07
  • About author:LI Zongmin,born in 1965,Ph.D,professor,Ph.D supervisor,is a member of CCF(No.11175S).His main research interests include computer graphics,digital image processing and pattern recognition.
  • Supported by:
    National Key Research and Development Program of China(2019YFF0301800),National Natural Science Foundation of China(61379106) and Natural Science Foundation of Shandong Province,China(ZR2013FM036,ZR2015FM011).

Abstract: 3D object detection is one of the most critical technologies in autonomous driving,and 3D object detection based on LiDAR is usually carried out in the scene of point cloud construction.The current methods cannot fully use the point cloud’s structural information,leading to false and missed target detection.To solve this problem,we propose a DEG R-CNN based on dyna-mically weighted graph convolution.Firstly,the primary neighbour and subordinate neighbour are set for the node in RoI,and the graph structure of the point cloud is constructed.The geometric information of the object is restored.Then,Gaussian and 1D convolution are used in the graph to efficiently aggregate the point cloud’s structural features.Finally,the cross-attention mechanism adaptively fuses image features of different granularities to supplement the image semantic information.Experiments are conducted on KITTI dataset,and the effectiveness of modules is verified.The 3D mAP of the method reaches 88.80%,which is 1.22% higher than that of the baseline model.At the same time,the results of 3D object detection are visualized and analyzed in detail to understand performance and accuracy of the method better.

Key words: Point clouds, 3D object detection, LiDAR, Multimodal fusion, Automatic driving

CLC Number: 

  • TP391
[1]SHI S S,WANG X G,LI H S.PointRCNN:3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:770-779.
[2]YANG Z T,SUN Y N,LIU S,et al.3DSSD:Point-based 3D single stage object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11040-11048.
[3]SHI S S,GUO C X,JIANG L,et al.PV-RCNN:Point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10529-10538.
[4]DENG J J,SHI S S,LI P W,et al.Voxel R-CNN:Towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:1201-1209.
[5]SHI W,RAJKUMAR R.Point-GNN:Graph neural network for 3D object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1711-1719.
[6]YANG H L,LIU Z L,WU X P,et al.Graph R-CNN:Towards accurate 3D object detection with semantic-decorated local graph[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:662-679.
[7]QI C R,SU H,MO K,et al.PointNet:Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660.
[8]QI C R,YI L,SU H,et al.PointNet++:Deep hierarchical feature learning on point sets in a metric space[J].arXiv:1706.02413,2017.
[9]ZHOU Y,TUZEL O.Voxelnet:End-to-end learning for pointcloud based 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4490-4499.
[10]YAN Y,MAO Y X,LI B.SECOND:Sparsely embedded convolutional detection[J].Sensors,2018,18(10):3337.
[11]LANG A H,VORA S,CAESAR H,et al.PointPillars:Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12697-12705.
[12]VORA S,LANG A H,HELOU B,et al.PointPainting:Sequential fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4604-4612.
[13]WANG C W,MA C,ZHU M,et al.PointAugmenting:Cross-modal augmentation for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11794-11803.
[14]LI Y,YU A W,MENG T,et al.DeepFusion:Lidar-camera deep fusion for multi-modal 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:17182-17191.
[15]CHEN Z,LI Z,ZHANG S,et al.AutoAlign:Pixel-instance feature aggregation for multi-modal 3D object detection[J].arXiv:2201.06493,2022.
[16]CHEN Z,LI Z,ZHANG S,et al.Deformable feature aggregation for dynamic multi-modal 3D object detection[C]//European Conference on Computer Vision.Cham:Springer Nature Swit-zerland,2022:628-644.
[17]LI X,MA T,HOU Y N,et al.LoGoNet:Towards accurate 3D object detection with local-to-global cross-modal fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:17524-17534.
[18]ZHOU X Y,WANG D Q,KRÄHENBÜHL P.Objects as points[J].arXiv:1904.07850,2019.
[19]WANG Y,SUN Y B,LIU Z W,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions on Graphics(tog),2019,38(5):1-12.
[20]KU J,MOZIFIAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2018:1-8.
[21]LIANG M,YANG B,CHEN Y,et al.Multi-task multi-sensorfusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7345-7353.
[22]CHEN X Z,MA H M,WAN J,et al.Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1907-1915.
[23]GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:The kitti dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237.
[24]HE C H,ZENG H,HUANG J Q,et al.Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11873-11882.
[25]ZHOU C,ZHANG Y N,CHEN J X,et al.OcTr:Octree-based transformer for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5166-5175.
[26]YOO J H,KIM Y,KIM J,et al.3D-CVF:Generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection[C]//Computer Vision-ECCV 2020:16th European Conference.Springer International Publishing,2020:720-736.
[27]PANG S,MORRIS D,RADHA H.CLOCs:Camera-LiDAR object candidates fusion for 3D object detection[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2020:10386-10393.
[28]HUANG T T,LIU Z,CHEN X W,et al.EPNet:Enhancing point features with image semantics for 3D object detection[C]//Computer Vision-ECCV 2020:16th European Conference.Springer International Publishing,2020:35-52.
[29]CHEN Y K,LI Y W,ZHANG X Y,et al.Focal sparse convolutional networks for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5428-5437.
[30]LI Y W,QI X J,CHEN Y K,et al.Voxel field fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:1120-1129.
[31]MAHMOUD A,HU J S K,WASLANDER S L.Dense voxel fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:663-672.
[32]WANG M L,ZHAO L,YUE Y F.PA3DNet:3-D vehicle detection with pseudo shape segmentation and adaptive camera-LiDAR fusion[J].IEEE Transactions on Industrial Informatics,2023,19(11):10693-10703.
[33]WANG C H,CHEN H W,CHEN Y,et al.VoPiFNet:Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(8):8527-8537.
[1] PU Bin, LIANG Zhengyou, SUN Yu. Monocular 3D Object Detection Based on Height-Depth Constraint and Edge Fusion [J]. Computer Science, 2024, 51(8): 192-199.
[2] HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196.
[3] HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7.
[4] LI Yuehao, WANG Dengjiang, JIAN Haifang, WANG Hongchang, CHENG Qinghua. LiDAR-Radar Fusion Object Detection Algorithm Based on BEV Occupancy Prediction [J]. Computer Science, 2024, 51(6): 215-222.
[5] JIAN Yingjie, YANG Wenxia, FANG Xi, HAN Huan. 3D Object Detection Based on Edge Convolution and Bottleneck Attention Module for Point Cloud [J]. Computer Science, 2024, 51(5): 162-171.
[6] GUO Zhangxiang, YAN Tianhong, ZHOU Guoqiang. Research Progress of 3D Point Cloud Data Processing Methods [J]. Computer Science, 2024, 51(11A): 240100132-13.
[7] LI Jianqiu, LIU Wanping, HUANG Dong, ZHANG Qiong. Multimodal Fusion Based Dynamic Malware Detection [J]. Computer Science, 2024, 51(11A): 240200098-7.
[8] ZHOU Yan, XU Yewen, PU Lei, XU Xuemiao, LIU Xiangyu, ZHOU Yuexia. Research Progress of Image 3D Object Detection in Autonomous Driving Scenario [J]. Computer Science, 2024, 51(11): 133-147.
[9] LI Xiang, FAN Zhiguang, LIN Nan, CAO Yangjie, LI Xuexiang. Self-supervised Learning for 3D Real-scenes Question Answering [J]. Computer Science, 2023, 50(9): 220-226.
[10] ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44.
[11] HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118.
[12] QIN Jing, WANG Weibin, ZOU Qijie, WANG Zumin, JI Changqing. Review of 3D Target Detection Methods Based on LiDAR Point Clouds [J]. Computer Science, 2023, 50(6A): 220400214-7.
[13] LIU Jiawei, DU Xin, FAN Fangzhao, XIE Chengbi. Design of Indoor Mapping and Navigation System Based on Multi-sensor [J]. Computer Science, 2023, 50(6A): 220300218-8.
[14] MIAO Yongwei, SHAN Feng, DU Sicheng, WANG Jinrong, ZHANG Xudong. Object Region Guided 3D Target Detection in RGB-D Scenes [J]. Computer Science, 2023, 50(11A): 221200152-8.
[15] YANG Xiaomeng, ZHANG Tao, ZHUANG Jianjun, QIAO Xiaoqiang, DU Yihang. Modulation Signal Recognition Based on Multimodal Fusion and Deep Learning [J]. Computer Science, 2023, 50(11A): 220900007-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!