Computer Science ›› 2025, Vol. 52 ›› Issue (12): 40-47.doi: 10.11896/jsjkx.241100054
• Computer Software & Architecture • Previous Articles Next Articles
SONG Rirong, CHEN Qinwen, CHEN Xing
CLC Number:
| [1]TANG W H,TANG S H,LIAO C L.China’s Mobile Internet in the 5G Era——Release of the “Development Report of China’s Mobile Internet(2020)”[J].China Newspaper Industry,2020(17):32-35. [2]ZELENCHUK D,ZELENCHUK D.Supervised monkey testswith espresso and UI automator[M]//Android Espresso Revealed:Writing Automated UI Tests.Berkeley,CA:Apress,2019:255-269. [3]PAYDAR S.An empirical study on the effectiveness of monkey testing for android applications[J].Iranian Journal of Science and Technology,Transactions of Electrical Engineering,2020,44(2):1013-1029. [4]KALYSCH A,DEUTEL M,MÜLLER T.Template-based Android inter process communication fuzzing[C]//Proceedings of the 15th International Conference on Availability,Reliability and Security.2020:1-6. [5]SU T,MENG G,CHEN Y,et al.Guided,stochastic model-based GUI testing of Android apps[C]//Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.2017:245-256. [6]AMALFITANO D,FASOLINO A R,TRAMONTANA P,et al.Using GUI ripping for automated testing of Android applications[C]//Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering.2012:258-261. [7]AMALFITANO D,FASOLINO A R,TRAMONTANA P,et al.MobiGUITAR:Automated model-based testing of mobile apps[J].IEEE Software,2014,32(5):53-59. [8]NGUYEN B N,ROBBINS B,BANERJEE I,et al.GUITAR:an innovative tool for automated testing of GUI-driven software[J].Automated Software Engineering,2014,21:65-105. [9]MAO K,HARMAN M,JIA Y.Sapienz:Multi-objective automated testing for android applications[C]//Proceedings of the 25th International Symposium on Software Testing and Analysis.2016:94-105. [10]MAHMOOD R,MIRZAEI N,MALEK S.Evodroid:Segmented evolutionary testing of android apps[C]//Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.2014:599-609. [11]GAO X,TAN S H,DONG Z,et al.Android testing via synthetic symbolic execution[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering.2018:419-429. [12]PAN M,HUANG A,WANG G,et al.Reinforcement learning based curiosity-driven testing of Android applications[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.2020:153-164. [13]ROMDHANA A,MERLO A,CECCATO M,et al.Deep rein-forcement learning for black-box testing of android apps[J].ACM Transactions on Software Engineering and Methodology,2022,31(4):1-29. [14]GAO Y,TAO C,GUO H,et al.A Deep Reinforcement Learning-Based Approach for Android GUI Testing[C]//Asia-Pacific Web(APWeb) and Web-Age Information Management(WAIM) Joint International Conference on Web and Big Data.Cham:Springer,2023:262-276. [15]LÓPEZ Y P,COLONNA J G,SILVA E D A,et al.Q-funcT:A Reinforcement Learning Approach for Automated Black Box Functionality Testing[C]//2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence(SEAI).IEEE,2022:119-123. [16]COLLINS E,NETO A,VINCENZI A,et al.Deep reinforcement learning based Android application GUI testing[C]//Proceedings of the XXXV Brazilian Symposium on Software Engineering.2021:186-194. [17]LU P,YANG C Z,YOU Z J.DiLAD:A Distributed Layout Testing Framework for Android Applications[C]//2020 the 3rd International Conference on Computing and Big Data.2020:24-29. [18]BORGES JR N P,GÓMEZ M,ZELLER A.Guiding app testing with mined interaction models[C]//Proceedings of the 5th International Conference on Mobile Software Engineering and Systems.2018:133-143. [19]KOROGLU Y,SEN A,MUSLU O,et al.QBE:QLearning-based exploration of android applications[C]//2018 IEEE 11thInternational Conference on Software Testing,Verification and Validation(ICST).IEEE,2018:105-115. [20]WANG Y,CHEN Y R,CHEN X,et al.Automating Release of Android APIs via Computational Reflection [J].Computer Science,2022,49(12):136-145. [21]ESKONEN J,KAHLES J,REIJONEN J.Automating gui testing with image-based deep reinforcement learning[C]//2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems(ACSOS).IEEE,2020:160-167. [22]Android Uiautomator2 Python Wrapper[EB/OL].https://github.com/openatx/uiautomator2. [23]Eclemma.JaCoCo Java Code Coverage Library[EB/OL](2020).https://www.eclemma.org/jacoco/index.html. |
| [1] | ZHU Shihao, PENG Kexing, MA Tinghuai. Graph Attention-based Grouped Multi-agent Reinforcement Learning Method [J]. Computer Science, 2025, 52(9): 330-336. |
| [2] | CHEN Jintao, LIN Bing, LIN Song, CHEN Jing, CHEN Xing. Dynamic Pricing and Energy Scheduling Strategy for Photovoltaic Storage Charging Stations Based on Multi-agent Deep Reinforcement Learning [J]. Computer Science, 2025, 52(9): 337-345. |
| [3] | ZHANG Yongliang, LI Ziwen, XU Jiahao, JIANG Yuchen, CUI Ying. Congestion-aware and Cached Communication for Multi-agent Pathfinding [J]. Computer Science, 2025, 52(8): 317-325. |
| [4] | HUO Dan, YU Fuping, SHEN Di, HAN Xueyan. Research on Multi-machine Conflict Resolution Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(7): 271-278. |
| [5] | PIAO Mingjie, ZHANG Dongdong, LU Hu, LI Rupeng, GE Xiaoli. Study on Multi-agent Supply Chain Inventory Management Method Based on Improved Transformer [J]. Computer Science, 2025, 52(6A): 240500054-10. |
| [6] | XU Dan, WANG Jiangtao. Design of Autonomous Decision for Trajectory Optimization of Intelligent Morphing Aircraft [J]. Computer Science, 2025, 52(6A): 240600068-7. |
| [7] | WU Zongming, CAO Jijun, TANG Qiang. Online Parallel SDN Routing Optimization Algorithm Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240900018-9. |
| [8] | ZHAO Chanchan, YANG Xingchen, SHI Bao, LYU Fei, LIU Libin. Optimization Strategy of Task Offloading Based on Meta Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240800050-8. |
| [9] | WANG Chenyuan, ZHANG Yanmei, YUAN Guan. Class Integration Test Order Generation Approach Fused with Deep Reinforcement Learning andGraph Convolutional Neural Network [J]. Computer Science, 2025, 52(6): 58-65. |
| [10] | ZHAO Xuejian, YE Hao, LI Hao, SUN Zhixin. Multi-AGV Path Planning Algorithm Based on Improved DDPG [J]. Computer Science, 2025, 52(6): 306-315. |
| [11] | LI Yuanbo, HU Hongchao, YANG Xiaohan, GUO Wei, LIU Wenyan. Intrusion Tolerance Scheduling Algorithm for Microservice Workflow Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(5): 375-383. |
| [12] | HAN Lin, WANG Yifan, LI Jianan, GAO Wei. Automatic Scheduling Search Optimization Method Based on TVM [J]. Computer Science, 2025, 52(3): 268-276. |
| [13] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
| [14] | DU Likuan, LIU Chen, WANG Junlu, SONG Baoyan. Self-learning Star Chain Space Adaptive Allocation Method [J]. Computer Science, 2025, 52(3): 359-365. |
| [15] | HUO Xingpeng, SHA Letian, LIU Jianwen, WU Shang, SU Ziyue. Windows Domain Penetration Testing Attack Path Generation Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(3): 400-406. |
|
||