Computer Science ›› 2018, Vol. 45 ›› Issue (6A): 568-572.

• Interdiscipline & Application • Previous Articles     Next Articles

Analysis on Mathematical Models of Maintenance Decision and Efficiency Evaluation of Computer Hardware

ZHAI Yong, LIU Jin,CHEN Jie, LIU Lei,XING Xu-chao,DU Jiang   

  1. National Geomatics Center of China,Beijing 100830,China
  • Online:2018-06-20 Published:2018-08-03

Abstract: Combing the actual conditions of computer hardware maintenance and on the basis of the reliability and avai-lability theory of equipmentl subsystem,a calculation method of maintenance importance variables which include equipment / subsystem asset salvage value,importance of business and unreliability was analyzed in accordance with the principle of maintenance funding efficiency optimization.Based on this,the mathematical model for evaluating the maintenance requirement of equipment/subsystem was researched and constructed,and then the maintenance decision algorithm was put forward.Finally,combining the instances,the paper proposed the method of maintenance efficiency eva-luation by using reliability theory of computer equipment/subsystem and the availability analysis based on Markov chain,providing certain inspiration for quantitative assessment of computer hardware maintenance.

Key words: Reliability, Availability, Asset salvage value, Importance of business, Evaluation of maintenance importance, Maintenance decision, Efficiency evaluation

CLC Number: 

  • TP301
[4]PECHT M,KAPUR K C,KANG R,et al.Foundations of Reliability Engineering[M].China:Publishing House of Electronics Industry,2011.
[6]TRIVEDI K S.Probability and Statistics with Reliability,Queuing,and Computer Science Applications,Second Edition[M].Publishing House of Electronics Industry,2015.
[7]XIE M,POH K L,DAI Y S.Computing System Reliability: Models and Analysis[M].Springer Publishing Company,Incorporated,2014.
[8]BEAUDRY M D.Performance-Related Reliability Measures for Computing Systems[J].IEEE Transactions on Computers,2006,C-27(6):540-547.
[9]SCHNEIDEWIND N.Quantitative Methods to Ensure the Relia- bility,Maintainability,and Availability of Computer Hardware and Software[M]∥Systems and Software Engineering with Applications.John Wiley & Sons,Inc.2011:1-43.
[10]EUSGELD I,FECHNER B,SALFNER F,et al.Hardware Reli- ability[M]∥Dependability Metrics.Springer Berlin Heidelberg,2008:59-103.
[11]LOPEZ L D,BOUGAEV A A,GROSS K C,et al.Method and system for the assessment of computer system reliability using quantitative cumulative stress metrics:US,US20130138419[P].2013.
[1] FANG Ting, GONG Ao-yu, ZHANG Fan, LIN Yan, JIA Lin-qiong, ZHANG Yi-jin. Dynamic Broadcasting Strategy in Cognitive Radio Networks Under Delivery Deadline [J]. Computer Science, 2021, 48(7): 340-346.
[2] QI Hui, SHI Ying, LI Deng-ao, MU Xiao-fang, HOU Ming-xing. Software Reliability Prediction Based on Continuous Deep Confidence Neural Network [J]. Computer Science, 2021, 48(5): 86-90.
[3] FENG Kai, MA Xin-yu. Subnetwork Reliability of (n,k)-bubble-sort Networks [J]. Computer Science, 2021, 48(4): 43-48.
[4] CUI Jian-qun, HUANG Dong-sheng, CHANG Ya-nan, WU Shu-qing. Congestion Control Based on Message Quality and Node Reliability in DTN [J]. Computer Science, 2021, 48(4): 268-273.
[5] ZHNAG Kai-qi, TU Zhi-ying, CHU Dian-hui, LI Chun-shan. Survey on Service Resource Availability Forecast Based on Queuing Theory [J]. Computer Science, 2021, 48(1): 26-33.
[6] HE Zhi-peng, LI Rui-lin, NIU Bei-fang. Highly Available Elastic Computing Platform for Metagenomics [J]. Computer Science, 2021, 48(1): 326-332.
[7] ZHAO Hui-qun, WU Kai-feng. Big Data Valuation Algorithm [J]. Computer Science, 2020, 47(9): 110-116.
[8] FENG Kai, LI Jing. Study on Subnetwork Reliability of k-ary n-cubes [J]. Computer Science, 2020, 47(7): 31-36.
[9] WANG Hui-yan, XU Jing-wei, XU Chang. Survey on Runtime Input Validation for Context-aware Adaptive Software [J]. Computer Science, 2020, 47(6): 1-7.
[10] CHENG Yu, LIU Wei, SUN Tong-xin, WEI Zhi-gang, DU Wei. Design of Fault-tolerant L1 Cache Architecture at Near-threshold Voltage [J]. Computer Science, 2020, 47(4): 42-49.
[11] ZHANG Zheng-lin,ZHANG Li-wei,WANG Wen-juan,XIA Li,FU Hao,WANG Hong-zhi,YANG Li-zhuang and
LI Hai. Survey on Computerized Neurocognitive Assessment System [J]. Computer Science, 2020, 47(2): 150-156.
[12] GENG Hai-jun, YIN Xia. Efficient Intra-domain Routing Protection Algorithm Based on i-SPF [J]. Computer Science, 2019, 46(8): 116-120.
[13] LI Mi, ZHUANG Yi, HU Xin-wen. Embedded Software Reliability Model and Evaluation Method Combining AADL and Z [J]. Computer Science, 2019, 46(8): 217-223.
[14] GENG Hai-jun,ZHANG Shuang,YIN Xia. Overview of Routing Availability in Intra-domain Routing Networks [J]. Computer Science, 2019, 46(7): 1-6.
[15] HUANG Hai-yan, LIU Xiao-ming, SUN Hua-yong, YANG Zhi-cai. Application of Clustering Analysis Algorithm in Uncertainty Decision Making [J]. Computer Science, 2019, 46(6A): 593-597.
Full text



[1] . [J]. Computer Science, 2018, 1(1): 1 .
[2] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75 .
[3] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[4] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[5] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[6] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99 .
[7] ZHOU Yan-ping and YE Qiao-lin. L1-norm Distance Based Least Squares Twin Support Vector Machine[J]. Computer Science, 2018, 45(4): 100 -105 .
[8] LIU Bo-yi, TANG Xiang-yan and CHENG Jie-ren. Recognition Method for Corn Borer Based on Templates Matching in Muliple Growth Periods[J]. Computer Science, 2018, 45(4): 106 -111 .
[9] GENG Hai-jun, SHI Xin-gang, WANG Zhi-liang, YIN Xia and YIN Shao-ping. Energy-efficient Intra-domain Routing Algorithm Based on Directed Acyclic Graph[J]. Computer Science, 2018, 45(4): 112 -116 .
[10] CUI Qiong, LI Jian-hua, WANG Hong and NAN Ming-li. Resilience Analysis Model of Networked Command Information System Based on Node Repairability[J]. Computer Science, 2018, 45(4): 117 -121 .