Computer Science ›› 2024, Vol. 51 ›› Issue (12): 334-342.doi: 10.11896/jsjkx.231000117
• Information Security • Previous Articles Next Articles
WANG Bo1, ZHAO Jincheng1, XU Bingfeng1,3, HE Gaofeng2
CLC Number:
[1]XU M,HOANG D T,KANG J,et al.Secure and ReliableTransfer Learning Framework for 6G-enabled Internet of Vehicles[J].IEEE Wireless Communications,2022,29(4):132-139. [2]MOYA OSORIO D P,AHMAD I,SANCHEZ J D V,et al.Towards 6G-Enabled Internet of Vehicles:Security and Privacy[J].IEEE Open Journal of the Communications Society,2022,3:82-105. [3]DEEMANTHA R,HETTIGE B.Autonomous Car:Current Issues,Challenges and Solution:A Review[C]//15th Interna-tional Research Conference.2023. [4]GUO Y.A review of Machine Learning-based zero-day attackdetection:Challenges and future directions[J].Computer Communications,2023,198:175-185. [5]MARTINS I,RESENDE J S,SOUSA P R,et al.Host-based IDS:a review and open issues of an anomaly detection system in IoT[J].Future Generation Computer Systems,2022,133:95-113. [6]YANG L,MOUBAYED A,SHAMI A.MTH-IDS:A Multi-Tiered Hybrid Intrusion Detection System for Internet of Vehicles[J].IEEE Internet of Things Journal,2022,9(1):616-632. [7]LIU Y,XUE H,ZHUANG W,et al.CT2-MDS:Cooperativetrust-aware tolerant misbehaviour detection system for connec-ted and automated vehicles[J].IET Intelligent Transport Systems,2022,16(2):218-231. [8]ZHAO J,SHETTY S,PAN J W,et al.Transfer learning for detecting unknown network attacks[J].EURASIP Journal on Information Security,2019,2019(1):1. [9]THANKAPPAN M,RIFÀ-POUS H,GARRIGUES C.Multi-Channel Man-in-the-Middle attacks against protected Wi-Fi networks:A state of the art review[J].Expert Systems with Applications,2022,210:118401. [10]SAMEERA N,SHASHI M.Deep transductive transfer learning framework for zero-day attack detection[J].ICT Express,2020,6(4):361-367. [11]MEHEDI S T,ANWAR A,RAHMAN Z,et al.Dependable Intrusion Detection System for IoT:A Deep Transfer Learning-based Approach[J].IEEE Transactions on Industrial Informa-tics,2023,19(1):1006-1017. [12]DAR S UH,YURT M,KARACAN L,et al.Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks[J].IEEE Transactions on Medical Imaging,2019,38(10):2375-2388. [13]HU W,GAO J,LI B,et al.Anomaly Detection Using Local Kernel Density Estimation and Context-Based Regression[J].IEEE Transactions on Knowledge and Data Engineering,2020,32(2):218-233. [14]NOURETDINOV I,GAMMERMAN J,FONTANA M,et al.Multi-level conformal clustering:A distribution-free technique for clustering and anomaly detection[J].Neurocomputing,2020,397:279-291. [15]YANG J,CHEN Y,RAHARDJA S.Neighborhood representative for improving outlier detectors[J].Information Sciences,2023,625:192-205. [16]ZHAO X,WU Y,LEE D L,et al.iForest:Interpreting Random Forests via Visual Analytics[J].IEEE Transactions on Visua-lization and Computer Graphics,2019,25(1):407-416. [17]ALI ALHEETI K M,MCDONALD-MAIER K.Intelligent intrusion detection in external communication systems for autonomous vehicles[J].Systems Science & Control Engineering,2018,6(1):48-56. [18]IMAN M,ARABNIA H R,RASHEED K.A Review of Deep Transfer Learning and Recent Advancements[J].Technologies,2023,11(2):40. [19]ANAND P,SINGH Y,SINGH H,et al.SALT:transfer lear-ning-based threat model for attack detection in smart home[J].Scientific Reports,2022,12(1):12247. [20]MICHAU G,FINK O.Unsupervised transfer learning for ano-maly detection:Application to complementary operating condition transfer[J].Knowledge-Based Systems,2021,216:106816. [21]ZHOU T,LI Q,LU H,et al.GAN review:Models and medical image fusion applications[J].Information Fusion,2023,91:134-148. [22]HOSSAIN M S,BETTS J M,PAPLINSKI A P.Dual Focal Lossto address class imbalance in semantic segmentation[J].Neurocomputing,2021,462:69-87. [23]KAMEL J,ANSARI M R,PETIT J,et al.Simulation Framework for Misbehavior Detection in Vehicular Networks[J].IEEE Transactions on Vehicular Technology,2020,69(6):6631-6643. [24]KAMEL J,WOLF M,VAN DER HEI R W,et al.VeReMi Extension:A Dataset for Comparable Evaluation of Misbehavior Detection in VANETs[C]//ICC 2020-2020 IEEE Interna-tional Conference on Communications(ICC).Dublin,Ireland:IEEE,2020:1-6. [25]RUFF L,VANDERMEULEN R A,GÖRNITZ N,et al.Deep One-Class Classification[C]//International Conference on Machine Learning.2018:4393-4402. [26]SHENKAR T,WOLF L.Anomaly detection for tabular datawith internal contrastive learning[C]//International Conference on Learning Representations.2022. [27]ZONG B,SONG Q,MIN M R,et al.Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//International Conference on Artificial Neural Networks.2018. [28]RUFF L,VANDERMEULEN R A,GÖRNITZ N,et al.Deep Semi-Supervised Anomaly Detection[C]//International Confe-rence on Learning Representations.2020. [29]PANG G,SHEN C,JIN H,et al.Deep Weakly-supervisedAnomaly Detection[C]//Proceedings of the 29th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2023. [30]XU H,WANG Y,WEI J,et al.Fascinating Supervisory Signals and Where to Find Them:Deep Anomaly Detection with Scale Learning[C]//International Conference on Machine Learning.2023. [31]NGO C P,WINARTO A A,LI C K K,et al.Fence GAN:Towards Better Anomaly Detection[C]//2019 IEEE 31st International Conference on Tools with Artificial Intelligence.2019:141-148. [32]LIU Y,LI Z,ZHOU C,et al.Generative Adversarial ActiveLearning for Unsupervised Outlier Detection[J].IEEE Transactions on Knowledge and Data Engineering,2020,32(8):1517-1528. [33]MOUSTAFA N,SLAY J.UNSW-NB15:a comprehensive data set for network intrusion detection systems[C]//2015 Military Communications and Information Systems Conference(MilCIS).Canberra,Australia:IEEE,2015:1-6. [34]YIN Y,JANG-JACCARD J,XU W,et al.IGRF-RFE:a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset[J].Journal of Big Data,2023,10(1):15. [35]SINHA J,MANOLLAS M.Efficient Deep CNN-BiLSTM Model for Network Intrusion Detection[C]//Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition.Xiamen,China:ACM,2020:223-231. [36]ABUALHOUL M Y,SHAGDAR O,NASHASHIBI F.Visible Light inter-vehicle Communication for platooning of autonomous vehicles[C]//2016 IEEE Intelligent Vehicles Symposium(IV).Gotenburg,Sweden:IEEE,2016:508-513. [37]MOUBAYED A,SHAMI A,HEIDARI P,et al.Edge-EnabledV2X Service Placement for Intelligent Transportation Systems[J].IEEE Transactions on Mobile Computing,2021,20(4):1380-1392. |
[1] | WANG Jiahui, PENG Guangling, DUAN Liang, YUAN Guowu, YUE Kun. Few-shot Shadow Removal Method for Text Recognition [J]. Computer Science, 2024, 51(9): 147-154. |
[2] | ZHAO Hui, PENG Jianyou, QIN Yulin, HAN Lili. Construction of Internet of Vehicles Covert Channel Based on Websocket Protocol [J]. Computer Science, 2024, 51(8): 364-370. |
[3] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[4] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[5] | ZHANG Rui, WANG Ziqi, LI Yang, WANG Jiabao, CHEN Yao. Task-aware Few-shot SAR Image Classification Method Based on Multi-scale Attention Mechanism [J]. Computer Science, 2024, 51(8): 160-167. |
[6] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[7] | HE Zhilin, GU Tianhao, XU Guanhua. Few-shot Semi-supervised Semantic Image Translation Algorithm Based on Prototype Correction [J]. Computer Science, 2024, 51(8): 224-231. |
[8] | WANG Jinghong, TIAN Changshen, LI Haokang, WANG Wei. Lagrangian Dual-based Privacy Protection and Fairness Constrained Method for Few-shot Learning [J]. Computer Science, 2024, 51(7): 405-412. |
[9] | ZENG Zihui, LI Chaoyang, LIAO Qing. Multivariate Time Series Anomaly Detection Algorithm in Missing Value Scenario [J]. Computer Science, 2024, 51(7): 108-115. |
[10] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[11] | QIAO Hong, XING Hongjie. Attention-based Multi-scale Distillation Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300223-11. |
[12] | PENG Bo, LI Yaodong, GONG Xianfu. Improved K-means Photovoltaic Energy Data Cleaning Method Based on Autoencoder [J]. Computer Science, 2024, 51(6A): 230700070-5. |
[13] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
[14] | WANG Li, CHEN Gang, XIA Mingshan, HU Hao. DUWe:Dynamic Unknown Word Embedding Approach for Web Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300191-5. |
[15] | WU Nannan, GUO Zehao, ZHAO Yiming, YU Wei, SUN Ying, WANG Wenjun. Study on Anomalous Evolution Pattern on Temporal Networks [J]. Computer Science, 2024, 51(6): 118-127. |
|