Computer Science ›› 2024, Vol. 51 ›› Issue (7): 108-115.doi: 10.11896/jsjkx.230400109
• Database & Big Data & Data Science • Previous Articles Next Articles
ZENG Zihui1, LI Chaoyang1,2, LIAO Qing1,2
CLC Number:
[1]CHOI K,YI J,PARK C,et al.Deep Learning for Anomaly Detection in Time-series Data:Review,Analysis,and Guidelines[J].IEEE Access,2021,9:120043-120065. [2]SUN Y,LI S H,CUI C,et al.Outlier Detection Method Basedon Gauss Calibration Function for Power User Data[J].Grid Technology,2018,42(5):1595-1606. [3]PENG C,WANG L W,HU W L.Electromagnetic SpectrumAnomaly Detection Algorithm Based on Depth Feature Fusion [J].Journal of Electronics,2022,50(6):1359-1369. [4]SUN C F,LU W M,DAI H D,et al.A Small Sample Data Augmentation Method Based on Time GAN and OCSVM for Multivariate Degenerated Equipment[J].Journal of Electronics,2022,50(11):2678-2687. [5]ZHANG R B,ZUO Y C,ZHOU Z L,et al.Multimodal Generative Adversarial Networks Based Multivariate Time SeriesAnomaly Detection[J].Computer Science,2023,50(5):355-362. [6]ZHANG J E,WU D,BOULET B.Time Series Anomaly Detection for Smart Grids:A Survey[C]//2021 IEEE Electrical Po-wer and Energy Conference(EPEC).IEEE,2021:125-130. [7]PANG G,SHEN C,CAO L,et al.Deep Learning for Anomaly Detection:A Review[J].ACM Computing Surveys(CSUR),2021,54(2):1-38. [8]WENING P,SCHMIDL S,PAPENBROCK T.TIMEEVAL:ABenchmarking Toolkit for Time Series Anomaly Detection Algorithms[J].Proceedings of the VLDB Endowment,2022,15(12):3678-3681. [9]MUNIR M,SIDDIQUI S A,DENGEL A,et al.DEEPANT:A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series[J].IEEE Access,2018,7:1991-2005. [10]HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:387-395. [11]SU Y,ZHAO Y,NIU C,et al.Robust Anomaly Detection for Multivariate Time Series Through Stochastic Recurrent Neural Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2828-2837. [12]CHEN Z,CHEN D,ZHANG X,et al.Learning Graph Structures with Transformer for Multivariate Time-Series Anomaly Detection in IOT[J].IEEE Internet of Things Journal,2021,9(12):9179-9189. [13]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010. [14]DENG A,HOOI B.Graph NeuralNetwork-Based Anomaly Detection in Multivariate Time Series[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:4027-4035. [15]ZONG B,SONG Q,MIN M R,et al.Deep Autoencoding Gaus-sian Mixture Model for Unsupervised Anomaly Detection[C]//International Conference on Learning Representations.2018. [16]DAI E Y,CHEN J.Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series[C]//International Conference on Learning Representations.2022. [17]AUDIBERT J,MICHIARDI P,GUYARD F,et al.USAD:Unsupervised Anomaly Detection on Multivariate Time Series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:3395-3404. [18]CHEN X,DENG L,HUANG F,et al.DAEMON:Unsupervised Anomaly Detection and Interpretation for Multivariate Time Series[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE).IEEE,2021:2225-2230. [19]LI D,CHEN D,JIN B,et al.MAD-GAN:Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[C]//Artificial Neural Networks and Machine Lear-ning-ICANN.2019:703-716. [20]CHEN S W,LI J,XUAN J X,et al.LSTM-GAN:Unsupervised Anomaly Detection for Time Series Fusion of GAN and Bi-LSTM[J].Journal of Chinese Computer Systems,2024,45(1):123-131. [21]REZENDE D,MOHAMED S.Variational Inference with Nor-malizing Flows[C]//International Conference on Machine Learning.PMLR,2015:1530-1538. [22]GOH J,ADEPU S,JUNEJO K N,et al.A Dataset to Support Research in The Design of Secure Water Treatment Systems[C]//International Conference on Critical Information Infrastructures Security.Springer,2016:88-99. |
[1] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[2] | BAI Wenchao, BAI Shuwen, HAN Xixian, ZHAO Yubo. Efficient Query Workload Prediction Algorithm Based on TCN-A [J]. Computer Science, 2024, 51(7): 71-79. |
[3] | YANG Zhenzhen, WANG Dongtao, YANG Yongpeng, HUA Renyu. Multi-embedding Fusion Based on top-N Recommendation [J]. Computer Science, 2024, 51(7): 140-145. |
[4] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[5] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
[6] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[7] | LOU Zhengzheng, ZHANG Xin, HU Shizhe, WU Yunpeng. Foggy Weather Object Detection Method Based on YOLOX_s [J]. Computer Science, 2024, 51(7): 206-213. |
[8] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[9] | YAN Jingtao, LI Yang, WANG Suge, PAN Bangze. Overlap Event Extraction Method with Language Granularity Fusion Based on Joint Learning [J]. Computer Science, 2024, 51(7): 287-295. |
[10] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[11] | WANG Xianwei, FENG Xiang, YU Huiqun. Multi-agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic PolicyGradient and Attention Critic [J]. Computer Science, 2024, 51(7): 319-326. |
[12] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[13] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[14] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[15] | QUE Yue, GAN Menghan, LIU Zhiwei. Object Detection with Receptive Field Expansion and Multi-branch Aggregation [J]. Computer Science, 2024, 51(6A): 230600151-6. |
|