Computer Science ›› 2025, Vol. 52 ›› Issue (10): 3-12.doi: 10.11896/jsjkx.250800044
• Digital Intelligence Enabling FinTech Frontiers • Previous Articles Next Articles
WANG Yongxin1,2, XU Xin3, ZHU Hongbin 1,2
CLC Number:
[1]SHAILAJA K,SEETHARAMULU B,JABBAR M A.Machine learning in healthcare:A review [C]//2018 2nd International Conference on Electronics,Communication and Aerospace Technology(ICECA).IEEE,2018:910-914. [2]CAO L.AI in finance:challenges,techniques,and opportunities[J].ACM Computing Surveys,2022,55(3):1-38. [3]COMBRINK H M E,MARIVATE V,ROSMAN B.Comparing synthetic tabular data generation between a probabilistic model and a deep learning model for education use cases [J].arXiv:2210.08528,2022. [4]SUN C,LI S,CAO D,et al.Tabular learning-based traffic event prediction for intelligent social transportation system [J].IEEE Transactions on Computational Social Systems,2022,10(3):1199-1210. [5]LI L,FAN Y,TSE M,et al.A review of applications in federated learning [J].Computers & Industrial Engineering,2020,149:106854. [6]ACAR A,AKSU H,ULUAGAC A S,et al.A survey on homomorphic encryption schemes:Theory and implementation [J].ACM Computing Surveys,2018,51(4):1-35. [7]FRIEDMAN A,SCHUSTER A.Data mining with differentialprivacy [C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2010:493-502. [8]KINGMA D P,WELLING M.Auto-encoding variational Bayes [J].arXiv:1312.6114,2013. [9]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets [C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2014:2672-2680. [10]SOHL-DICKSTEIN J,WEISS E,MAHESWARANATHANN,et al.Deep unsupervised learning using nonequilibrium thermodynamics [C]// International Conference on Machine Lear-ning.PMLR,2015:2256-2265. [11]ZHAO W X,ZHOU K,LI J,et al.A survey of large language models [J].arXiv:2303.18223,2023. [12]SKLAR A.Random variables,joint distribution functions,andcopulas [J].Kybernetika,1973,9(6):449-460. [13]RABAEY P,DELEU J,HEYTENS S,et al.Clinical reasoning over tabular data and text with bayesian networks [C]// International Conference on Artificial Intelligence in Medicine.Cham:Springer,2024:229-250. [14]RUBIN D B.Statistical disclosure limitation [J].Journal of Official Statistics,1993,9(2):461-468. [15]YOUNG J,GRAHAM P,PENNY R.Using Bayesian networks to create synthetic data [J].Journal of Official Statistics,2009,25(4):549-567. [16]MARTINS L N A,GONÇALVES F B,GALLETTI T P.Gene-ration and analysis of synthetic data via Bayesian networks:a robust approach for uncertainty quantification via Bayesian paradigm [J].arXiv:2402.17915,2024. [17]SKLAR M.Fonctions de répartitionàn dimensions et leursmarges [J].Annales de l'ISUP,1959,8(3):229-231. [18]EMBRECHTS P,MCNEIL A,STRAUMANN D.Correlationand dependence in risk management:properties and pitfalls [M]//Risk Management:Value at Risk and Beyond.2002:176-223. [19]RESTREPO J P.Nonparametric generation of synthetic datausing copulas [J].Electronics,2023,12(7):1601. [20]JUTRAS-DUBÉ P,AL-KHASAWNEH M B,YANG Z C,et al.Copula-based synthetic population generation [J].arXiv:2302.09193,2023. [21]KAMTHE S,ASSEFA S,DEISENROTH M.Copula flows for synthetic data generation [J].arXiv:2101.00598,2021. [22]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique [J].Journal of Artificial Intelligence Research,2002,16:321-357. [23]GOODMAN N R.Statistical analysis based on a certain multivariate complex Gaussian distribution(an introduction) [J].The Annals of Mathematical Statistics,1963,34(1):152-177. [24]ALEMI A,POOLE B,FISCHER I,et al.Fixing a broken ELBO [C]// International Conference on Machine Learning.PMLR,2018. [25]XU L,SKOULARIDOU M,CUESTA-INFANTE A,et al.Modeling tabular data using conditional GAN [C]//Procee-dings of the 33rd Internationa Conference on Neural Information Processing Systems.2019:7335-7345. [26]MA C,TSCHIATSCHEK S,TURNER R,et al.VAEM:a deep generative model for heterogeneous mixed type data [C]// Advances in Neural Information Processing Systems.2020:11237-11247. [27]LIU T,QIAN Z,BERREVOETS J,et al.Goggle:Generativemodelling for tabular data by learning relational structure [C]//The 11th International Conference on Learning Representations.2023. [28]XU L,VEERAMACHANENI K.Synthesizing tabular datausing generative adversarial networks [J].arXiv:1811.11264,2018. [29]PARK N,MOHAMMADI M,GORDE K,et al.Data synthesis based on generative adversarial networks [J].arXiv:1806.03384,2018. [30]ZHAO Z,BIRKE R,CHEN L Y.FCT-GAN:Enhancing table synthesis via fourier transform [J].arXiv:2210.06239,2022. [31]RAJABI A,GARIBAY O O.Tabfairgan:Fair tabular data ge-neration with generative adversarial networks [J].Machine Learning and Knowledge Extraction,2022,4(2):488-501. [32]MIYATO T,KOYAMA M.cGANs with projection discriminator [J].arXiv:1802.05637,2018. [33]LIN Z,KHETAN A,FANTI G,et al.PacGAN:The power of two samples in generative adversarial networks [J].IEEE Journal on Selected Areas in Information Theory,2020,1(1):324-335. [34]XIE L,LIN K,WANG S,et al.Differentially private generative adversarial network [J].arXiv:1802.06739,2018. [35]JORDON J,YOON J,VAN DER SCHAAR M.PATE-GAN:Generating synthetic data with differential privacy guarantees [C]//International Conference on Learning Representations.2018. [36]HO J,JAIN A,ABBEEL P.Denoising diffusion probabilisticmodels [C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.2020:6840-6851. [37]KOTELNIKOV A,BARANCHUK D,RUBACHEV I,et al.Tabddpm:Modelling tabular data with diffusion models [C]// International Conference on Machine Learning.PMLR,2023:17564-17579. [38]SHI J,XU M,HUA H,et al.Tabdiff:a multi-modal diffusion model for tabular data generation [J].arXiv:2410.20626,2024. [39]LEE C,KIM J,PARK N.CODI:Co-evolving contrastive diffusion models for mixed-type tabular synthesis [C]// Internatio-nal Conference on Machine Learning.PMLR,2023:18940-18956. [40]SUH N,LIN X,HSIEH D Y,et al.Autodiff:combining auto-encoder and diffusion model for tabular data synthesizing [J].ar-Xiv:2310.15479,2023. [41]LIN X,XU C,YANG M,et al.Ctsyn:A foundational model for cross tabular data generation [J].arXiv:2406.04619,2024. [42]CERITLI T,GHOSHEH G O,CHAUHAN V K,et al.Synthesizing mixed-type electronic health records using diffusion mo-dels [J].arXiv:2302.14679,2023. [43]HE H,HAO W,XI Y,et al.A Flexible Generative Model for Heterogeneous Tabular {EHR} with Missing Modality [C]// The 12th International Conference on Learning Representations.2024. [44]SATTAROV T,SCHREYER M,BORTH D.Findiff:Diffusion models for financial tabular data generation [C]// Proceedings of the 4th ACM International Conference on AI in Finance.2023:64-72. [45]SCHREYER M,SATTAROV T,SIM A,et al.Imb-FinDiff:Conditional Diffusion Models for Class Imbalance Synthesis of Financial Tabular Data [C]// Proceedings of the 5th ACM International Conference on AI in Finance.2024:617-625. [46]KIM J,LEE C,SHIN Y,et al.Sos:Score-based oversampling for tabular data [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:762-772. [47]OUYANG Y,XIE L,LI C,et al.Missdiff:Training diffusionmodels on tabular data with missing values [J].arXiv:2307.00467,2023. [48]JOLICOEUR-MARTINEAU A,FATRAS K,KACHMAN T.Generating and imputing tabular data via diffusion and flow-based gradient-boosted trees [C]// International Conference on Artificial Intelligence and Statistics.PMLR,2024:1288-1296. [49]ZHANG H,ZHANG J,SRINIVASAN B,et al.Mixed-type ta-bular data synthesis with score-based diffusion in latent space [J].arXiv:2310.09656,2023. [50]BROWN T,MANN B,RYDER N,et al.Language models are few-shot learners [C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.2020:1877-1901. [51]HEGSELMANN S,BUENDIA A,LANG H,et al.Tabllm:Few-shot classification of tabular data with large language mo-dels [C]// International Conference on Artificial Intelligence and Statistics.PMLR,2023:5549-5581. [52]YIN P,NEUBIG G,YIH W,et al.TaBERT:Pretraining forjoint understanding of textual and tabular data [J].arXiv:2005.08314,2020. [53]KALE M,RASTOGI A.Text-to-text pre-training for data-to-text tasks [J].arXiv:2005.10433,2020. [54]BORISOV V,SEβLER K,LEEMANN T,et al.Language mo-dels are realistic tabular data generators [J].arXiv:2210.06280,2022. [55]GRESHAKE K,ABDELNABI S,MISHRA S,et al.Not what you've signed up for:Compromising real-world llm-integrated applications with indirect prompt injection [C]// Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security.2023:79-90. [56]SOLATORIO A V,DUPRIEZ O.Realtabformer:Generating realistic relational and tabular data using transformers [J].arXiv:2302.02041,2023. [57]ZHAO Z,BIRKE R,CHEN L Y.Tabula:Harnessing language models for tabular data synthesis [C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining.Singapore:Springer,2025:247-259. [58]GULATI M,ROYSDON P.TabMT:Generating tabular datawith masked transformers [C]// Advances in Neural Information Processing Systems.2023:46245-46254. [59]ZHANG T,WANG S,YAN S,et al.Generative table pre-training empowers models for tabular prediction [J].arXiv:2305.09696,2023. [60]WANG Y,FENG D,DAI Y,et al.HARMONIC:HarnessingLLMs for tabular data synthesis and privacy protection [C]// Advances in Neural Information Processing Systems.2024:100196-100212. [61]TRAN T V,XIONG L.Differentially private tabular data synthesis using large language models [J].arXiv:2406.01457,2024. [62]NGUYEN D,GUPTA S,DO K,et al.Generating realistic tabular data with large language models [C]// 2024 IEEE International Conference on Data Mining(ICDM).IEEE,2024:330-339. [63]YANG S,YUAN C,RONG Y,et al.P-ta:Using proximal policy optimization to enhance tabular data augmentation via large language models [J].arXiv:2406.11391,2024. [64]ZHANG M,XIAO Z,LU G,et al.Aigt:AI generative tablebased on prompt [J].arXiv:2412.18111,2024. [65]SEEDAT N,HUYNH N,VAN BREUGEL B,et al.CuratedLLM:Synergy of LLMs and data curation for tabular augmentation in low-data regimes [J].arXiv:2312.12112,2023. [66]YANG J Y,PARK G,KIM J,et al.Language-interfaced tabular oversampling via progressive imputation and self-authentication [C]// The Twelfth International Conference on Learning Representations.2024. [67]KIM J,KIM T,CHOO J.Epic:Effective prompting for imba-lanced-class data synthesis in tabular data classification via large language models [C]// Advances in Neural Information Processing Systems.2024:31504-31542. [68]NAM J,KIM K,OH S,et al.Optimized feature generation for tabular data via llms with decision tree reasoning [C]// Advances in Neural Information Processing Systems.2024:92352-92380. [69]FEKRI M N,GHOSH A M,GROLINGER K.Generating energy data for machine learning with recurrent generative adversa-rial networks [J].Energies,2019,13(1):130. [70]BERGER V W,ZHOU Y Y.Kolmogorov-smirnov test:Over-view [EB/OL].https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat06558. [71]TAO L,XU S,WANG C H,et al.Discriminative estimation of total variation distance:A fidelity auditor for generative data [J].arXiv:2405.15337,2024. |
[1] | LI Ao, BAI Xueru, JIANG Jiali, QIAO Ye. Group Cross Adversarial Application in Stock Price Prediction [J]. Computer Science, 2025, 52(10): 22-32. |
[2] | LIU Yuting, GU Jingjing, ZHOU Qiang. Urban Flow Prediction Method Based on Structural Causal Model [J]. Computer Science, 2025, 52(10): 70-78. |
[3] | LEI Ershuai, YU Suping, FAN Hong, XU Wujun. Spatial-Temporal Propagation Graph Neural Network for Traffic Prediction [J]. Computer Science, 2025, 52(10): 90-97. |
[4] | ZHAO Chen, PENG Jian, HUANG Junhao. Spatial-Temporal Joint Mapping for Skeleton-based Action Recognition [J]. Computer Science, 2025, 52(10): 106-114. |
[5] | WANG Liuyi, ZHOU Chun, ZENG Wenqiang, HE Xingxing, MENG Hua. High-frequency Feature Masking-based Adversarial Attack Algorithm [J]. Computer Science, 2025, 52(10): 374-381. |
[6] | LI Siqi, YU Kun, CHEN Yuhao. Prediction of Resource Usage on High-performance Computing Platforms Based on ARIMAand LSTM [J]. Computer Science, 2025, 52(9): 178-185. |
[7] | WANG Limei, HAN Linrui, DU Zuwei, ZHENG Ri, SHI Jianzhong, LIU Yiqun. Privacy Policy Compliance Detection Method for Mobile Application Based on Large LanguageModel [J]. Computer Science, 2025, 52(8): 1-16. |
[8] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
[9] | YU Shihai, HU Bin. Bio-inspired Neural Network with Visual Invariant Response to Moving Pedestrian [J]. Computer Science, 2025, 52(7): 170-188. |
[10] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[11] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[12] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[13] | LIU Bingzhi, CAO Yin, ZHOU Yi. Distillation Method for Text-to-Audio Generation Based on Balanced SNR-aware [J]. Computer Science, 2025, 52(6A): 240900125-5. |
[14] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[15] | CHENG Yan, HE Huijuan, CHEN Yanying, YAO Nannan, LIN Guobo. Study on interpretable Shallow Class Activation Mapping Algorithm Based on Spatial Weights andInter Layer Correlation [J]. Computer Science, 2025, 52(6A): 240500140-7. |
|