Computer Science ›› 2025, Vol. 52 ›› Issue (2): 344-352.doi: 10.11896/jsjkx.240400029
• Information Security • Previous Articles Next Articles
SUN Hongbin1,2, WANG Su3, WANG Zhiliang1,3, JIANG Zheyu1, YANG Jiahai1,3, ZHANG Hui1,2
CLC Number:
[1]PASQUIER T,HAN X,GOLDSTEIN M,et al.Practical whole-system provenance capture[C]//Proceedings of the 2017 Symposium on Cloud Computing.2017:405-418. [2]DONG F,LI S,JIANG P,et al.Are we there yet? an industrial viewpoint on provenance-based endpoint detection and response tools[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security.2023:2396-2410. [3]ALTINISIK E,DENIZ F,SENCAR H T.ProvG-Searcher:AGraph Representation Learning Approach for Efficient Provenance Graph Search[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security.2023:2247-2261. [4]CHENG Z,LV Q,LIANG J,et al.KAIROS:Practical Intrusion Detection and Investigation using Whole-system Provenance[C]//2024 IEEE Symposium on Security and Privacy(SP).2024. [5]WANG S,WANG Z,ZHOU T,et al.Threatrace:Detecting and tracing host-based threats in node level through provenance graph learning[J].IEEE Transactions on Information Forensics and Security,2022,17:3972-3987. [6]MANZOOR E,MILAJERDI S M,AKOGLU L.Fast memory-efficient anomaly detection in streaming heterogeneous graphs[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1035-1044. [7]HAN X,PASQUIER T,BATES A,et al.UNICORN:Runtime Provenance-Based Detector for Advanced Persistent Threats[C]//Network and Distributed System Security Symposium.2020. [8]WANG Q,HASSAN W U,LI D,et al.You Are What You Do:Hunting Stealthy Malware via Data Provenance Analysis[C]//Network and Distributed System Security Symposium.2020. [9]YANG F,XU J,XIONG C,et al.{PROGRAPHER}:An Ano-maly Detection System based on Provenance Graph Embedding[C]//32nd USENIX Security Symposium.2023:4355-4372. [10]XU Z,FANG P,LIU C,et al.Depcomm:Graph summarization on system audit logs for attack investigation[C]//2022 IEEE Symposium on Security and Privacy(SP).2022:540-557. [11]ZENG J,CHUA Z L,CHEN Y,et al.WATSON:AbstractingBehaviors from Audit Logs via Aggregation of Contextual Semantics[C]//Network and Distributed System Security Symposium.2021. [12]ZENGY J,WANG X,LIU J,et al.Shadewatcher:Recommendation-guided cyber threat analysis using system audit records[C]//2022 IEEE Symposium on Security and Privacy(SP).2022:489-506. [13]REHMAN M U,AHMADI H,HASSAN W U.FLASH:A Comprehensive Approach to Intrusion Detection via Provenance Graph Representation Learning[C]//2024 IEEE Symposium on Security and Privacy(SP).2024:139-139. [14]HOSSAIN M N,MILAJERDI S M,WANG J,et al.{SLEUTH}:Real-time attack scenario reconstruction from {COTS} audit data[C]//26th USENIX Security Symposium.2017:487-504. [15]HOSSAIN M N,SHEIKHI S,SEKAR R.Combating depen-dence explosion in forensic analysis using alternative tag propagation semantics[C]//2020 IEEE Symposium on Security and Privacy(SP).2020:1139-1155. [16]XIONG C,ZHU T,DONG W,et al.CONAN:A practical real-time APT detection system with high accuracy and efficiency[J].IEEE Transactions on Dependable and Secure Computing,2020,19(1):551-565. [17]MILAJERDI S M,GJOMEMO R,ESHETE B,et al.Holmes:real-time apt detection through correlation of suspicious information flows[C]//2019 IEEE Symposium on Security and Privacy(SP).2019:1137-1152. [18]MILAJERDI S M,ESHETE B,GJOMEMOR,et al.Poirot:Aligning attack behavior with kernel audit records for cyber threat hunting[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security.2019:1795-1812. [19]HASSAN W U,BATES A,MARINO D.Tactical provenanceanalysis for endpoint detection and response systems[C]//2020 IEEE Symposium on Security and Privacy(SP).2020:1172-1189. [20]KEROMYTIS A.Transparent computing engagement 3 data release [EB/OL].https://github.com/darpa-i2o/Transparent-Computing. [21]HAMILTON W L,YING R,LESKOVEC J.Inductive represen-tation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [22]BRIDGE K,SHARKEY K,COULTER D,et al.About EventTracing [EB/OL].https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing. [23]The Linux Audit Framework [EB/OL].https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing. [24]VELICKOVIC P,FEDUS W,HAMILTON W L,et al.Deepgraph infomax[C]//ICLR.2019. [25]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//The Semantic Web:15th International Conference.2018:593-607. |
[1] | HE Yuankang, MA Hailong, HU Tao, JIANG Yiming, ZHANG Peng, LIANG Hao. Traffic Adversarial Example Defense Based on Feature Transfer [J]. Computer Science, 2025, 52(2): 362-373. |
[2] | LIU Dongqi, ZHANG Qiong, LIANG Haolan, ZHANG Zidong, ZENG Xiangjun. Study on Smart Grid AMI Intrusion Detection Method Based on Federated Learning [J]. Computer Science, 2024, 51(6A): 230700077-8. |
[3] | WANG Chundong, LEI Jiebin. Intrusion Detection Model Based on Combinatorial Optimization of Improved Pigeon SwarmAlgorithm [J]. Computer Science, 2024, 51(11A): 231100054-7. |
[4] | WANG Chundong, ZHANG Jiakai. Study on Open Set Based Intrusion Detection Method [J]. Computer Science, 2024, 51(11A): 231000033-6. |
[5] | FAN Yi, HU Tao, YI Peng. System Call Host Intrusion Detection Technology Based on Generative Adversarial Network [J]. Computer Science, 2024, 51(10): 408-415. |
[6] | ZHANG Yuxiang, HAN Jiujiang, LIU Jian, XIAN Ming, ZHANG Hongjiang, CHEN Yu, LI Ziyuan. Network Advanced Threat Detection System Based on Event Sequence Correlation Under ATT&CK Framework [J]. Computer Science, 2023, 50(6A): 220600176-7. |
[7] | YANG Pengfei, CAI Ruijie, GUO Shichen, LIU Shengli. Container-based Intrusion Detection Method for Cisco IOS-XE [J]. Computer Science, 2023, 50(4): 298-307. |
[8] | LI Haitao, WANG Ruimin, DONG Weiyu, JIANG Liehui. Semi-supervised Network Traffic Anomaly Detection Method Based on GRU [J]. Computer Science, 2023, 50(3): 380-390. |
[9] | BAI Wanrong, WEI Feng, ZHENG Guangyuan, WANG Baohui. Study on Intrusion Detection Algorithm Based on TCN-BiLSTM [J]. Computer Science, 2023, 50(11A): 230300142-8. |
[10] | LIU Jie-ling, LING Xiao-bo, ZHANG Lei, WANG Bo, WANG Zhi-liang, LI Zi-mu, ZHANG Hui, YANG Jia-hai, WU Cheng-nan. Network Security Risk Assessment Framework Based on Tactical Correlation [J]. Computer Science, 2022, 49(9): 306-311. |
[11] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[12] | ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao. SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm [J]. Computer Science, 2022, 49(6A): 562-570. |
[13] | CAO Yang-chen, ZHU Guo-sheng, SUN Wen-he, WU Shan-chao. Study on Key Technologies of Unknown Network Attack Identification [J]. Computer Science, 2022, 49(6A): 581-587. |
[14] | WEI Hui, CHEN Ze-mao, ZHANG Li-qiang. Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns [J]. Computer Science, 2022, 49(6): 350-355. |
[15] | ZHANG Hong-min, LI Ping-ping, FANG Xiao-bing, LIU Hong. Human Abnormal Behavior Detection Method Based on Improved YOLOv3 Network Model [J]. Computer Science, 2022, 49(4): 233-238. |
|