Computer Science ›› 2025, Vol. 52 ›› Issue (3): 326-337.doi: 10.11896/jsjkx.240900070
• Computer Network • Previous Articles Next Articles
WANG Dongzhi1, LIU Yan1, GUO Bin1, YU Zhiwen1,2
CLC Number:
[1]SATYANARAYANAN A,VICTOR BAHL V,CÁCERES R,et al.The Case for VM-based Cloudlets in Mobile Computing[J].IEEE Pervasive Computing,2009,8(4):14-23. [2]ZHOU C X,SUN Y,WANG D G,et al.Survey of federatedlearning research[J].Chinese Journal of Network and Information Security,2021,7(5):77-92. [3]ZHOU Z H.Learnware:on the future of machine learning[J].Frontiers of Computer Science,2016,10(4):589-590. [4]ZHANG Y J,YAN Y H,ZHAO P,et al.Towards enablinglearnware to handle unseen jobs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(12):10964-10972. [5]MCCLOSKEY M,COHEN N J.Catastrophic interference inconnectionist networks:The sequential learning problem[M]//Psychology ofLearning and Motivation.Academic Press,1989,24:109-165. [6]MCCLELLAND J L,MCNAUGHTON B L,O'REILLY R C.Why there are complementary learning systems in the hippocampus and neocortex:insights from the successes and failures of connectionist models of learning and memory[J].Psychological Review,1995,102(3):419. [7]YOON J,JEONG W,LEE G,et al.Federated continual learning with weighted inter-client transfer[C]//International Confe-rence on Machine Learning.PMLR,2021:12073-12086. [8]DONG J H,WANG L X,FANG Z,et al.Federated class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10164-10173. [9]VADERA S,AMEEN S.Methods for Pruning Deep Neural Networks[J].arXiv:2011.00241,2020. [10]MOLCHANOV P,TYREE S,KARRAS T,et al.Pruning Con-volutional Neural Networks for Resource Efficient Transfer Learning[J].arXiv:1611.06440,2016. [11]THAPA C,CHAMIKARA M A P,CAMTEPE S.SplitFed:When Federated Learning Meets Split Learning[J].arXiv:2004.12088,2020. [12]VEPAKOMMA P,RASKAR R.Split Learning:A Resource Efficient Model and Data Parallel Approach for Distributed Deep Learning[M]//Federated Learning.Springer,Cham.2022:439-451. [13]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:In-verted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [14]FANG W.MOBILENET:US13153290[P].[2024-07-30].DOI:US20120309352 A1. [15]IZKIKEVICH M E.Simple model of spiking neurons[J].IEEE Transactions on Neural Networks,2003,14 (6):1569-1572. [16]WANG J Z,KONG L W,HUANG X C,et al.Research review of federated learning algorithms[J].Big Data,2020,6(6):64-82. [17]MCMAHAN H B,MOORE E,RAMAGE D,et al.Communication-efficient learning of deep networks from decentralized data[J].arXiv:1602.05629v3,2017. [18]LI T,SAHU A K,ZAHEER M,et al.Federated optimization in heterogeneous networks[J].Proceedings of Machine Learning and Systems,2020,2:429-450. [19]KARIMIREDDY P S,KALE S,MOHRI M,et al.SCAFFOLD:Stochastic Controlled Averaging for On-Device Federated Lear-ning[J].arXiv:1910.06378v4,2019. [20]SHOHAM N,AVIDOR T,KEREN A,et al.Overcoming forgetting in federated learning on non-iid data[J].arXiv:1910.07796,2019. [21]ZHANG P C,WEI X M,JIN H Y.Dynamic QoS Optimization Method Based on Federal Learning in Mobile Edge Computing[J].Chinese Journal of Computers,2021,44(12):2431-2446. [22]GUO Y T,LIU F,CAI Z P,et al.PREFER:Point-of-interest Recommendation with efficiency and privacy-preservation via Federated Edge leaRning[J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2021,5(1):1-25. [23]FENG J,RONG C,SUN F,et al.PMF:A Privacy-preservingHuman Mobility Prediction Framework via Federated Learning [J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2020,4 (1):1-21. [24]YE D D,YU R,PAN M,et al.Federated learning in vehicular edge computing:A selective model aggregation approach[J].IEEE Access,2020,8:23920-23935. [25]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].PNAS,2017,114(13):3521-3526. [26]YANG C,ZHU M L,LIU Y F,et al.FedPD:Federated Open Set Recognition with Parameter Disentanglement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:4882-4891. [27]MORI J,TERANISHI I,FURUKAWA R.Continual Horizontal Federated Learning for Heterogeneous Data[J].arXiv:2203.02108,2022. [28]PONULAK F,KASINSKI A.Introduction to spiking neuralnetworks:Information processing,learning and applications[J].ActaNeurobiologiae Experimentalis,2011,71(4):409-433. [29]TAHERKHANI A,BELATRECHE A,LI Y,et al.A review of learning in biologically plausible spiking neural networks[J].Neural Networks,2020,122:253-272. [30]ZHANG T L,XU B.Research Advances and Perspectives onSpiking Neural Networks[J].Chinese Journal of Computers,2021,44(9):1767-1785. [31]HEBB D O.The organization of behavior:A neuropsychological theory[M].New York:John Wiley and Sons,1949:62. [32]MARKRAM H,GERSTNER W,SJÖSTRÖM P J.A history of spike-timing-dependent plasticity[J].Frontiers in Synaptic Neuroscience,2011,3:4. [33]SENGUPTA A,YE Y T,WANG R,et al.Going deeper in spiking neural networks:VGG and residual architectures [J].Frontiers in Neuroscience,2019,13:95. [34]WANG Y X,XU Y,YAN R,et al.Deep spiking neural networkswith binary weights for object recognition [J].IEEE Transactions on Cognitive and Developmental Systems,2021,13(3):514-523. [35]HU Y F,TANG H J,PAN G.Spiking deep residual networks[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(8):5200-5205. [36]WU Y J,DENG L,LI G Q,et al.Spatio-temporal backpropagation for training high-performance spiking neural networks [J].Frontiers in Neuroscience,2018,12:331. [37]MOSTAFA H.Supervised learning based on temporal coding inspiking neural networks [J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(7):3227-3235. [38]YANG H,LAM K Y,XIAO L,et al.Lead federated neuromorphic learning for wireless edge artificial intelligence[J].Nature Communications,2022,13(1):4269. [39]SOURES N,HELFER P,DARAM A,et al.Tacos:task agnostic continual learning in spiking neural networks[C]//Theory and Foundation of Continual Learning Workshop at ICML’2021.2021. [40]REBUFFI S A,KOLESNIKOV A,SPERL G,et al.ICARL:Incremental classifier and representation learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2001-2010. [41]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [42]XIAO H,RASUL K,VOLLGRAF R.Fashion-MNIST:A Novel Image Dataset for Benchmarking Machine Learning Algorithms[J].arXiv:1708.07747,2017. |
[1] | LUO Zhengquan, WANG Yunlong, WANG Zilei, SUN Zhenan, ZHANG Kunbo. Study on Active Privacy Protection Method in Metaverse Gaze Communication Based on SplitFederated Learning [J]. Computer Science, 2025, 52(3): 95-103. |
[2] | HU Kangqi, MA Wubin, DAI Chaofan, WU Yahui, ZHOU Haohao. Federated Learning Evolutionary Multi-objective Optimization Algorithm Based on Improved NSGA-III [J]. Computer Science, 2025, 52(3): 152-160. |
[3] | WANG Ruicong, BIAN Naizheng, WU Yingjun. FedRCD:A Clustering Federated Learning Algorithm Based on Distribution Extraction andCommunity Detection [J]. Computer Science, 2025, 52(3): 188-196. |
[4] | XIE Jiachen, LIU Bo, LIN Weiwei , ZHENG Jianwen. Survey of Federated Incremental Learning [J]. Computer Science, 2025, 52(3): 377-384. |
[5] | ZHENG Jianwen, LIU Bo, LIN Weiwei, XIE Jiachen. Survey of Communication Efficiency for Federated Learning [J]. Computer Science, 2025, 52(2): 1-7. |
[6] | WANG Xin, XIONG Shubo, SUN Lingyun. Federated Graph Learning:Problems,Methods and Challenges [J]. Computer Science, 2025, 52(1): 362-373. |
[7] | DUN Jingbo, LI Zhuo. Survey on Transmission Optimization Technologies for Federated Large Language Model Training [J]. Computer Science, 2025, 52(1): 42-55. |
[8] | LIU Yuming, DAI Yu, CHEN Gongping. Review of Federated Learning in Medical Image Processing [J]. Computer Science, 2025, 52(1): 183-193. |
[9] | LI Zhi, LIN Sen, ZHANG Qiang. Edge Cloud Computing Approach for Intelligent Fault Detection in Rail Transit [J]. Computer Science, 2024, 51(9): 331-337. |
[10] | SUN Min, DING Xining, CHENG Qian. Federated Learning Scheme Based on Differential Privacy [J]. Computer Science, 2024, 51(6A): 230600211-6. |
[11] | TAN Zhiwen, XU Ruzhi, WANG Naiyu, LUO Dan. Differential Privacy Federated Learning Method Based on Knowledge Distillation [J]. Computer Science, 2024, 51(6A): 230600002-8. |
[12] | LIU Dongqi, ZHANG Qiong, LIANG Haolan, ZHANG Zidong, ZENG Xiangjun. Study on Smart Grid AMI Intrusion Detection Method Based on Federated Learning [J]. Computer Science, 2024, 51(6A): 230700077-8. |
[13] | XUE Jianbin, DOU Jun, WANG Tao, MA Yuling. Scheme for Maximizing Secure Communication Capacity in UAV-assisted Edge Computing Networks [J]. Computer Science, 2024, 51(6A): 230800032-7. |
[14] | WANG Chenzhuo, LU Yanrong, SHEN Jian. Study on Fingerprint Recognition Algorithm for Fairness in Federated Learning [J]. Computer Science, 2024, 51(6A): 230800043-9. |
[15] | ZHOU Tianyang, YANG Lei. Study on Client Selection Strategy and Dataset Partition in Federated Learning Basedon Edge TB [J]. Computer Science, 2024, 51(6A): 230800046-6. |
|