Computer Science ›› 2025, Vol. 52 ›› Issue (8): 180-187.doi: 10.11896/jsjkx.240900104
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZENG Xinran, LI Tianrui, LI Chongshou
CLC Number:
[1]PARK J,KIM C,KIM S,et al.PCSCNet:Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network[J].Expert Systems with Applications,2023,212:118815. [2]THOMAS H,AGRO B,GRIDSETH M,et al.Self-supervisedlearning of lidar segmentation for autonomous indoor navigation[C]//2021 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2021:14047-14053. [3]HAN L,ZHENG T,ZHU Y,et al.Live semantic 3d perception for immersive augmented reality[J].IEEE Transactions on Visualization and Computer Graphics,2020,26(5):2012-2022. [4]QI C R,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [5]QI C R,YI L,SU H,et al.Pointnet++:Deep hierarchical feature learning on point sets in ametric space[C]//Proceedings of the 31st International Conference onNeural Information Processing Systems.2017:5105-5114. [6]THOMAS H,QI C R,DESCHAUD J E,et al.Kpconv:Flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6411-6420. [7]CHOY C,GWAK J Y,SAVARESE S.4D spatio-temporal convnets:Minkowski convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3075-3084. [8]HU Q,YANG B,XIE L,et al.Randla-net:Efficient semanticsegmentation of large-scale point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11108-11117. [9]TANG H,LIU Z,ZHAO S,et al.Searching efficient 3d architectures with sparse point-voxel convolution[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2020:685-702. [10]XU Z,YUAN B,ZHAO S,et al.Hierarchical point-based active learning for semi-supervised point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:18098-18108. [11]LEI X,GUAN H,MA L,et al.DAAL-WS:A weakly-supervised method integrated with data augmentation and active learning strategies for MLS point cloud semantic segmentation[J].International Journal of Applied Earth Observation and Geoinformation,2024,131:103970. [12]WU T H,LIU Y C,HUANG Y K,et al.Redal:Region-based and diversity-aware active learning for point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:15510-15519. [13]SHAO F,LUO Y,LIU P,et al.Active learning for point cloud semantic segmentation via spatial-structural diversity reasoning[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:2575-2585. [14]GUINARD S,LANDRIEU L.Weakly supervised segmentation-aided classification of urban scenes from 3D LiDAR point clouds[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017,42:151-157. [15]ARMENI I,SENER O,ZAMIR A R,et al.3D semantic parsing of large-scale indoor spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1534-1543. [16]HACKEL T,SAVINOV N,LADICKY L,et al.Semantic3d.Net:A new large-scale point cloud classification benchmark[J].ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017,4:91-98. [17]SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3d shape recognition[C]//Procee-dings of the IEEE International Conference on Computer Vision.2015:945-953. [18]BOULCH A,GUERRY J,LE SAUX B,et al.SnapNet:3D point cloud semantic labeling with 2D deep segmentation networks[J].Computers & Graphics,2018,71:189-198. [19]WU B,WAN A,YUE X,et al.Squeezeseg:Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud[C]//2018 IEEE International Confe-rence on Robotics and Automation(ICRA).IEEE,2018:1887-1893. [20]WU B,ZHOU X,ZHAO S,et al.Squeezesegv2:Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C]//2019 International Conference on Robotics and Automation(ICRA).IEEE,2019:4376-4382. [21]MILIOTO A,VIZZO I,BEHLEY J,et al.Rangenet++:Fast and accurate lidar semantic segmentation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2019:4213-4220. [22]XU C,WU B,WANG Z,et al.Squeezesegv3:Spatially-adaptive convolution for efficient point-cloud segmentation[C]//Compu-ter Vision-ECCV 2020:16th European Conference,Glasgow,UK,Part XXVIII 16.Springer International Publishing,2020:1-19. [23]ZHAO L,ZHOU H,ZHU X,et al.Lif-seg:Lidar and cameraimage fusion for 3d lidar semantic segmentation[J].IEEE Transactions on Multimedia,2023,26:1158-1168. [24]MATURANA D,SCHERER S.Voxnet:A 3d convolutionalneural network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2015:922-928. [25]TCHAPMI L,CHOY C,ARMENI I,et al.Segcloud:Semantic segmentation of 3d point clouds[C]//2017 International Confe-rence on 3D Vision(3DV).IEEE,2017:537-547. [26]GRAHAM B,ENGELCKE M,VAN DER MAATEN L.3d semantic segmentation with submanifold sparse convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:9224-9232. [27]YAN X,GAO J,LI J,et al.Sparse single sweep lidar point cloud segmentation via learning contextual shape priors from scene completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:3101-3109. [28]PARK J,KIM C,KIM S,et al.PCSCNet:Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network[J].Expert Systems with Applications,2023,212:118815. [29]ZHAO H,JIANG L,FU C W,et al.Pointweb:Enhancing local neighborhood features for point cloud processing[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5565-5573. [30]LI Y,BU R,SUN M,et al.PointCNN:Convolution on x-transformed points[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:828-838. [31]WU W,QI Z,LI F.Pointconv:Deep convolutional networks on 3d point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9621-9630. [32]PAPON J,ABRAMOV A,SCHOELER M,et al.Voxel cloud connectivity segmentation-supervoxels for point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2013:2027-2034. [33]LI X,WANG X,CHEN X,et al.Unlabeled data selection for active learning in image classification[J].Scientific Reports,2024,14(1):424. [34]ZHANG S,ZHANG L,LIU Z.Active domain adaptation for semantic segmentation via dynamically balancing domainness and uncertainty[J].Image and Vision Computing,2024,148:105132. [35]CAI L,XU X,LIEW J H,et al.Revisiting superpixels for active learning in semantic segmentation with realistic annotation costs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10988-10997. [36]XU Y,SUN Z,HOEGNER L,et al.Instance segmentation oftrees in urban areas from MLS point clouds using supervoxel contexts and graph-based optimization[C]//2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing(PRRS).IEEE,2018:1-5. [37]SETTLES B,CRAVEN M.An analysis of active learning strategies for sequence labeling tasks[C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Proces-sing.2008:1070-1079. [38]JOSHI A J,PORIKLI F,PAPANIKOLOPOULOS N.Multi-class active learning for image classification[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:2372-2379. |
[1] | ZHANG Shuai, ZHOU Peng, ZHANG Yanping. Online Capricious Data Stream Learning with Sparse Labels [J]. Computer Science, 2025, 52(6): 139-150. |
[2] | LI Yahe, XIE Zhipeng. Active Learning Based on Maximum Influence Set [J]. Computer Science, 2025, 52(1): 289-297. |
[3] | XING Kaiyan, CHEN Wen. Multi-generator Active Learning Algorithm Based on Reverse Label Propagation and ItsApplication in Outlier Detection [J]. Computer Science, 2024, 51(4): 359-365. |
[4] | ZHOU Shenghao, YUAN Weiwei, GUAN Donghai. Local Interpretable Model-agnostic Explanations Based on Active Learning and Rational Quadratic Kernel [J]. Computer Science, 2024, 51(2): 245-251. |
[5] | QI Xuanlong, CHEN Hongyang, ZHAO Wenbing, ZHAO Di, GAO Jingyang. Study on BGA Packaging Void Rate Detection Based on Active Learning and U-Net++ Segmentation [J]. Computer Science, 2023, 50(6A): 220200092-6. |
[6] | GUO Wei, HUANG Jiahui, HOU Chenyu, CAO Bin. Text Classification Method Based on Anti-noise and Double Distillation Technology [J]. Computer Science, 2023, 50(6): 251-260. |
[7] | XU Jie, ZHOU Xinzhi. Multi-elite Interactive Learning Based Particle Swarm Optimization Algorithm with Adaptive Bound-handling Technique [J]. Computer Science, 2023, 50(11): 210-219. |
[8] | DING Hongxin, ZOU Peinie, ZHAO Junfeng, WANG Yasha. Active Learning-based Text Entity and Relation Joint Extraction Method [J]. Computer Science, 2023, 50(10): 126-134. |
[9] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[10] | HOU Xia-ye, CHEN Hai-yan, ZHANG Bing, YUAN Li-gang, JIA Yi-zhen. Active Metric Learning Based on Support Vector Machines [J]. Computer Science, 2022, 49(6A): 113-118. |
[11] | ZHANG Da-lin, ZHANG Zhe-wei, WANG Nan, LIU Ji-qiang. AutoUnit:Automatic Test Generation Based on Active Learning and Prediction Guidance [J]. Computer Science, 2022, 49(11): 39-48. |
[12] | ZHANG Ren-zhi, ZHU Yan. Malicious User Detection Method for Social Network Based on Active Learning [J]. Computer Science, 2021, 48(6): 332-337. |
[13] | WANG Ti-shuang, LI Pei-feng, ZHU Qiao-ming. Chinese Implicit Discourse Relation Recognition Based on Data Augmentation [J]. Computer Science, 2021, 48(10): 85-90. |
[14] | DONG Xin-yue, FAN Rui-dong, HOU Chen-ping. Active Label Distribution Learning Based on Marginal Probability Distribution Matching [J]. Computer Science, 2020, 47(9): 190-197. |
[15] | LI Yi-hong, LIU Fang-zheng, DU Zhen-yu. Malware Detection Algorithm for Improving Active Learning [J]. Computer Science, 2019, 46(5): 92-99. |
|