Computer Science ›› 2022, Vol. 49 ›› Issue (7): 164-169.doi: 10.11896/jsjkx.210600044
• Artificial Intelligence • Previous Articles Next Articles
ZHOU Hui1,2, SHI Hao-chen1,2, TU Yao-feng1,3, HUANG Sheng-jun1,2
CLC Number:
[1]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [2]HE K,ZHANG X,REN S,et al.Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE International Conference on Computer vision.2015:1026-1034. [3]XIONG W,DROPPO J,HUANG X,et al.Achieving humanparity in conversational speech recognition[J].arXiv:1610.05256,2016. [4]SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[J].arXiv:1409.3215,2014. [5]LIU L,OUYANGW,WANG X,et al.Deep learning for generic object detection:A survey[J].International Journal of Computer Vision,2020,128(2):261-318. [6]GEIRHOS R,RUBISH P,MICHAELIS C,et al.ImageNet-trained CNNs are biased towards texture;increasing shape bias improves accuracy and robustness[J].arXiv:1811.12231,2018. [7]RUSAK E,SCHOTT L,ZIMMERMANN R S,et al.A simple way to make neural networks robust against diverse image corruptions [C]//European Conference on Computer Vision.Cham:Springer,2020:53-69. [8]HENDRYCKS D,MAZEIKA M,KADAVATH S,et al.Usingself-supervised learning can improve model robustness and uncertainty[J].arXiv:1906.12340,2019. [9]HENDRYCKS D,MU N,CUBUK E D,et al.Augmix:A simple data processing method to improve robustness and uncertainty[J].arXiv:1912.02781,2019. [10]MAO C,ZHONG Z,YANG J,et al.Metric learning for adversarial robustness[J].arXiv:1909.00900,2019. [11]ZHANG R.Making convolutional networks shift-invriance again[J].Proceedings of Machine Learning Research,2019,97:7324-7334. [12]TRAMER F,CARLINI N,BRENDEL W,et al.On adaptive attacks to adversarial example defenses[J].arXiv:2002.08347,2020. [13]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[J].arXiv:1706.06083,2017. [14]WONG E,SCHMIDT F,KOLTER Z.Wasserstein adversarialexamples via projected sinkhorn iterations[C]//Internatioal Conference on Machine Learning.PMLR,2019:6808-6817. [15]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013. [16]CHAPELLE O,WESTON J,BOTTOU L,et al.Vicinal riskminimization[C]//Conference and Workshop on Neural Information Processing Systems(NIPS).2000. [17]HENDRYCKS D,DIETTERICH T.Benchmarking neural net-work robustness to common corruptions and perturbations[J].arXiv:1903.12261,2019. [18]XIE Q,LUONG M T,HOVY E,et al.Self-training with noisy student improves imagenet classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:10687-10698. [19]MAHAJAN D,GIRSHICK R,RAMANATHAN V,et al.Ex-ploring the limits of weakly supervised pretraining[C]//Proceedings of the European Conference on Computer Vision(ECCV).IEEE,2018:181-196. [20]UESATO J,ALAYRAC J B,HUANG P S,et al.Are labels required for improving adversarial robustness?[J].arXiv:1905.13725,2019. [21]LEWIS D D,GALE W A.A sequential algorithm for trainingtext classifiers[C]//SIGIR'94.London:Springer,1994:3-12. [22]TONG S,KOLLER D.Support vector machine active learning with applications to text classification[J].Journal of machine learning research,2001,23:45-66. [23]YAN Y,HUANG S J.Cost-Effective Active Learning for Hierarchical Multi-Label Classification[C]//IJCAI.2018:2962-2968. [24]HUANG S J,GAO N,CHEN S.Multi-instance multi-label active learning[C]//IJCAI.2017:1886-1892. [25]HUANG S J,ZHOU Z H.Active query driven by uncertainty and diversity for incremental multi-label learning[C]//2013 IEEE 13th International Conference on Data Mining.IEEE,2013:1079-1084. [26]HUANG S J,RONG J,ZHOU Z H.Active learning by querying informative and representative examples[C]//Conference and Workshop on Neural Information Processing Systems(NIPS).2014:1936-1949. [27]WANG Z,YE J P.Querying discriminative and representativesamples for batch mode active learning[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2015,9(3):1-23. [28]DODGE S,KARAM L.Understanding how image qualityaffects deep neural networks[C]//2016 Eighth International Conference on Quality of Multimedia Experience(QoMEX).IEEE,2016:1-6. [29]DODGE S,KARAM L.A study and comparison of human and deep learning recognition performance under visual distortions[C]//2017 26th International Conference on Computer Communication and Networks(ICCCN).IEEE,2017:1-7. [30]GEIRHOS R,TEMME C R M,RAUBER J,et al.Generalisation in humans and deep neural networks[J].arXiv:1808.08750,2018. [31]CARLINI N,ATHALYE A,PAPERNOT N,et al.On evaluating adversarial robustness[J].arXiv:1902.06705,2019. [32]CHEN P,ZHAO J C,YU X S.Ensemble Method of K-NearestNeighbor Enhancement Fuzzy Minimax neuralNetworks with Centroid[J].Journal of Chongqing University of Technology(Natural Science),2021,35(9):116-129. [33]FU Y,ZHU X,AND LI B.A survey on instance selection for active learning[J].Knowledge and Information Systems,2013,35(2):249-283. [34]SEUNG HS,OPPER M,SOMPOLINSKY H.Query by committee[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory.1992:287-294. [35]YOU X,WANG R,TAO D.Diverse expected gradient activelearning for relative attributes[J].IEEE Transactions on Image Processing,2014,23(7):3203-3217. [36]ROY N,MCCALLUM A.Toward optimal active learningthrough sampling estimation of error reduction[C]//International Conferenceon Machine Learning(ICML).2001:441-448. [37]GEMAN S,BIENENSTOCK E,DOURSAT R.Neural networks and the bias/variance dilemma[J].NeuralComputation,1992,4(1):1-58. [38]NING KP,TAO L,CHEN S,et al.Improving Model Robustness by Adaptively Correcting Perturbation Levels with Active Queries[J].arXiv:2103.14824.2021. [39]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [40]YAO L,MILLER J.Tiny imagenet classification with convolutional neural networks[J].CS 231N,2015,2(5):8. [41]MU N,GILMER J.Mnist-c:A robustness benchmark for computer vision[J].arXiv:1906.02337,2019. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[9] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[10] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[11] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[12] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
[13] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[14] | MAO Dian-hui, HUANG Hui-yu, ZHAO Shuang. Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance [J]. Computer Science, 2022, 49(6A): 523-530. |
[15] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
|