Computer Science ›› 2025, Vol. 52 ›› Issue (8): 188-194.doi: 10.11896/jsjkx.240600106
• Computer Graphics & Multimedia • Previous Articles Next Articles
DING Zhengze, NIE Rencan, LI Jintao, SU Huaping, XU Hang
CLC Number:
[1]CHEN H,DENG L,ZHU L,et al.ECFuse:Edge-Consistent and Correlation-Driven Fusion Framework for Infrared and Visible Image Fusion [J].Sensors,2023,23(19):8071. [2]KAUR H,KOUNDAL D,KADYAN V.Image fusion tech-niques:a survey [J].Archives of Computational Methods in Engineering,2021,28(7):4425-4447. [3]ZHAO W,XIE S,ZHAO F,et al.Metafusion:Infrared and visible image fusion via meta-feature embedding from object detection[C]//Proceeding of the IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition.2023. [4]ZHAO Z,XU S,ZHANG J,et al.Efficient and model-based infrared and visible image fusion via algorithm unrolling [J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(3):1186-1196. [5]MA J,MA Y,LI C.Infrared and visible image fusion methods and applications:A survey [J].Information Fusion,2019,45:153-178. [6]TANG W,LIU Y,CHENG J,et al.A phase congruency-based green fluorescent protein and phase contrast image fusion me-thod in nonsubsampled shearlet transform domain [J].Microscopy Research and Technique,2020,83(10):1225-1234. [7]ZHANG Q,LIU Y,BLUM R S,et al.Sparse representationbased multi-sensor image fusion for multi-focus and multi-modality images:A review [J].Information Fusion,2018,40:57-75. [8]KONG W,LEI Y,ZHAO H.Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization [J].Infrared Physics & Technology,2014,67:161-172. [9]MA J,TANG L,FAN F,et al.SwinFusion:Cross-domain long-range learning for general image fusion via swin transformer [J].IEEE/CAA Journal of Automatica Sinica,2022,9(7):1200-1217. [10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need [C]//Advances in Neural Information Processing Systems.2017. [11]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale [J].arXiv:2010.11929,2020. [12]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021. [13]ZAMIR S W,ARORA A,KHAN S,et al.Restormer:Efficient transformer for high-resolution image restoration[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022. [14]LU J,BATRA D,PARIKH D,et al.Vilbert:Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks [C]//Advances in Neural Information Processing systems.2019. [15]SUN Y,DONG L,HUANG S,et al.Retentive network:A successor to transformer for large language models [J].arXiv:2307.08621,2023. [16]GU A,DAO T.Mamba:Linear-time sequence modeling with selective state spaces [J].arXiv:2312.00752,2023. [17]LIU Y,TIAN Y,ZHAO Y,et al.Vmamba:Visual state space model [J].arXiv:2401.10166,2024. [18]HAMILTON J D.State-space models [J].Handbook of Econometrics,1994,4:3039-3080. [19]ZHAO D,SHU X,ZHANG L,et al.Sensor interrogation technique using chirped fibre grating based Sagnac loop [J].Electronics Letters,2002,38(7):312-313. [20]HAN Y,CAI Y,CAO Y,et al.A new image fusion performance metric based on visual information fidelity [J].Information Fusion,2013,14(2):127-135. [21]XYDEAS C S,PETROVIC V.Objective image fusion perfor-mance measure [J].Electronics Letters,2000,36(4):308-309. [22]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity [J].IEEE Transactions on Image Processing,2004,13(4):600-612. [23]ESKICIOGLU A M,FISHER P S.Image quality measures and their performance [J].IEEE Transactions on Communications,1995,43(12):2959-2965. [24]CUI G,FENG H,XU Z,et al.Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition [J].Optics Communications,2015,341:199-209. [25]JAGALINGAM P,HEGDE A V.A review of quality metrics for fused image [J].Aquatic Procedia,2015,4:133-142. [26]ZHAO Z,XU S,ZHANG C,et al.DIDFuse:Deep image decomposition for infrared and visible image fusion [J].arXiv:2003.09210,2020. [27]XU H,MA J,JIANG J,et al.U2Fusion:A unified unsupervised image fusion network [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(1):502-518. [28]MA J,ZHANG H,SHAO Z,et al.GANMcC:A generative adversarial network with multiclassification constraints for infrared and visible image fusion [J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-14. [29]ZHANG H,MA J.SDNet:A versatile squeeze-and-decomposi-tion network for real-time image fusion [J].International Journal of Computer Vision,2021,129(10):2761-2785. [30]TANG W,HE F,LIU Y.YDTR:Infrared and visible image fusion via Y-shape dynamic transformer [J].IEEE Transactions on Multimedia,2022,25:5413-5428. [31]LIU J,FAN X,HUANG Z,et al.Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022. [32]LIANG P,JIANG J,LIU X,et al.Fusion from decomposition:A self-supervised decomposition approach for image fusion[C]//European Conference on Computer Vision.Springer,2022. [33]HUANG Z,LIU J,FAN X,et al.Reconet:Recurrent correction network for fast and efficient multi-modality image fusion[C]//European Conference on Computer Vision.Springer,2022. [34]TANG W,HE F,LIU Y,et al.DATFuse:Infrared and visible image fusion via dual attention transformer [J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33(7):3159-3172. [35]LI H,XU T,WU X J,et al.LRRNet:A novel representationlearning guided fusion network for infrared and visible images [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9):11040-11052. |
[1] | JIANG Rui, FAN Shuwen, WANG Xiaoming, XU Youyun. Clustering Algorithm Based on Improved SOM Model [J]. Computer Science, 2025, 52(8): 162-170. |
[2] | LIU Huayong, XU Minghui. Hash Image Retrieval Based on Mixed Attention and Polarization Asymmetric Loss [J]. Computer Science, 2025, 52(8): 204-213. |
[3] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
[4] | HUANG Xingyu, WANG Lihui, TANG Kun, CHENG Xinyu, ZHANG Jian, YE Chen. EFormer:Efficient Transformer for Medical Image Registration Based on Frequency Division and Board Attention [J]. Computer Science, 2025, 52(7): 151-160. |
[5] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
[6] | LONG Xiao, HUANG Wei, HU Kai. Bi-MI ViT:Bi-directional Multi-level Interaction Vision Transformer for Lung CT ImageClassification [J]. Computer Science, 2025, 52(6A): 240700183-6. |
[7] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[8] | PIAO Mingjie, ZHANG Dongdong, LU Hu, LI Rupeng, GE Xiaoli. Study on Multi-agent Supply Chain Inventory Management Method Based on Improved Transformer [J]. Computer Science, 2025, 52(6A): 240500054-10. |
[9] | LI Yang, LIU Yi, LI Hao, ZHANG Gang, XU Mingfeng, HAO Chongqing. Human Pose Estimation Using Millimeter Wave Radar Based on Transformer and PointNet++ [J]. Computer Science, 2025, 52(6A): 240400169-9. |
[10] | WANG Xuejian, WANG Yiheng, SUN Xinpo, LIU Chuan, JIA Ming, ZHAO Chao, YANG Chao. Extraction of Crustal Deformation Anomalies Based on Transformer-Isolation Forest [J]. Computer Science, 2025, 52(6A): 240600155-6. |
[11] | CHEN Jiajun, LIU Bo, LIN Weiwei, ZHENG Jianwen, XIE Jiachen. Survey of Transformer-based Time Series Forecasting Methods [J]. Computer Science, 2025, 52(6): 96-105. |
[12] | WANG Teng, XIAN Yunting, XU Hao, XIE Songqi, ZOU Quanyi. Ship License Plate Recognition Network Based on Pyramid Transformer in Transformer [J]. Computer Science, 2025, 52(6): 179-186. |
[13] | CUI Kebin, HU Zhenzhen. Few-shot Insulator Defect Detection Based on Local and Global Feature Representation [J]. Computer Science, 2025, 52(6): 286-296. |
[14] | HAN Daojun, LI Yunsong, ZHANG Juntao, WANG Zemin. Knowledge Graph Completion Method Fusing Entity Descriptions and Topological Structure [J]. Computer Science, 2025, 52(5): 260-269. |
[15] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
|