Computer Science ›› 2025, Vol. 52 ›› Issue (8): 268-276.doi: 10.11896/jsjkx.240600146
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Yuan1, ZHANG Shengjie1, LIU Lilong1, QIAN Shengsheng2
CLC Number:
[1]AFYOUNI I,AL AGHBARI Z,RAZACK R A.Multi-feature,multi-modal,and multi-source social event detection:A comprehensive survey[J].Information Fusion,2022,79:279-308. [2]QIAN S,CHEN H,XUE D,et al.Open-world social event classification[C]//Proceedings of the ACM Web Conference 2023.2023:1562-1571. [3]ZHOU H,YIN H,ZHENG H,et al.A survey on multi-modal social event detection[J].Knowledge-Based Systems,2020,195:105695. [4]CHANDRASEKARAN G,NGUYEN T N,HEMANTH D J.Multimodal sentimental analysis for social media applications:A comprehensive review[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2021,11(5):e1415. [5]CHEN M,CHEN S C,SHYU M L,et al.Semantic event detection via multimodal data mining[J].IEEE Signal Processing Magazine,2006,23(2):38-46. [6]HAN X,WANG J,ZHANG M,et al.Using social media to mine and analyze public opinion related to COVID-19 in China[J].International Journal of Environmental Research and Public Health,2020,17(8):2788. [7]XIA H,AN W,LI J,et al.Outlier knowledge management for extreme public health events:Understanding public opinions about COVID-19 based on microblog data[J].Socio-Economic Planning Sciences,2022,80:100941. [8]JIN Y,LIU B F,AUSTIN L L.Examining the role of social media in effective crisis management:The effects of crisis origin,information form,and source on publics' crisis responses[J].Communication Research,2014,41(1):74-94. [9]ZADE H,SHAH K,RANGARAJAN V,et al.From situational awareness to actionability:Towards improving the utility of social media data for crisis response[J].Proceedings of the ACM on Human-Computer Interaction,2018,2(CSCW):1-18. [10]CACCIA L,ALJUNDI R,ASADI N,et al.New insights on reducing abrupt representation change in online continual learning[J].arXiv:2104.05025,2021. [11]MACEDO A Q,MARINHO L B,SANTOS R L T.Context-aware event recommendation in event-based social networks[C]//Proceedings of the 9th ACM Conference on Recommender Systems.2015:123-130. [12]ABAVISANI M,WU L,HU S,et al.Multimodal categorization of crisis events in social media[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14679-14689. [13]KIELA D,BHOOSHAN S,FIROOZ H,et al.Supervised multimodal bitransformers for classifying images and text[J].arXiv:1909.02950,2019. [14]OFLI F,ALAM F,IMRAN M.Analysis of social media data using multimodal deep learning for disaster response[J].arXiv:2004.11838,2020. [15]DE LANGE M,ALJUNDI R,MASANA M,et al.A continual learning survey:Defying forgetting in classification tasks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(7):3366-3385. [16]LESORT T,LOMONACO V,STOIAN A,et al.Continuallearning for robotics:Definition,framework,learning strategies,opportunities and challenges[J].Information Fusion,2020,58:52-68. [17]MAI Z,LI R,JEONG J,et al.Online continual learning in image classification:An empirical survey[J].Neurocomputing,2022,469:28-51. [18]BHAT P,ZONOOZ B,ARANI E.Task-aware information routing from common representation space in lifelong learning[J].arXiv:2302.11346,2023. [19]JIN X,LIN B Y,ROSTAMI M,et al.Learn continually,genera-lize rapidly:Lifelong knowledge accumulation for few-shot lear-ning[J].arXiv:2104.08808,2021. [20]SARFRAZ F,ARANI E,ZONOOZ B.Error sensitivity modulation based experience replay:Mitigating abrupt representation drift in continual learning[J].arXiv:2302.11344,2023. [21]ROBINS A.Catastrophic forgetting,rehearsal and pseudore-hearsal[J].Connection Science,1995,7(2):123-146. [22]BOSCHINI M,BONICELLI L,BUZZEGA P,et al.Class-incremental continual learning into the extended der-verse[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5497-5512. [23]LIN H,ZHANG B,FENG S,et al.PCR:Proxy-based contrastive replay for online class-incremental continual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:24246-24255. [24]ZHOU D W,WANG Q W,YE H J,et al.A model or 603 exemplars:Towards memory-efficient class-incremental learning[J].arXiv:2205.13218,2022. [25]ALAM F,OFLI F,IMRAN M.Crisismmd:Multimodal twitter datasets from natural disasters[C]//Proceedings of the International AAAI Conference on Web and Social Media.2018. [26]KOCHKINA E,LIAKATA M,ZUBIAGA A.All-in-one:Multi-task learning for rumour verification[J].arXiv:1806.03713,2018. [27]LEE K,PALSETIA D,NARAYANAN R,et al.Twitter trending topic classification[C]//2011 IEEE 11th International Conference on Data Mining Workshops.IEEE,2011:251-258. [28]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems.2013. [29]PARILLA-FERRER B E,FERNANDEZ P L,BALLENA J T.Automatic classification of disaster-related tweets[C]//International Conference on Innovative Engineering Technologies(ICIET).2014. [30]SRIRAM B,FUHRY D,DEMIR E,et al.Short text classification in twitter to improve information filtering[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2010:841-842. [31]QIAO Z,ZHANG P,ZHOU C,et al.Event recommendation in event-based social networks[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.AAAI,2014:3130-3131. [32]TANG J,TANG J,LIU H.Recommendation in social media:recent advances and new frontiers[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2014. [33]TSOU M H,YANG J A,LUSHER D,et al.Mapping social activities and concepts with social media(Twitter) and web search engines(Yahoo and Bing):a case study in 2012 US Presidential Election[J].Cartography and Geographic Information Science,2013,40(4):337-348. [34]ALSAEDI N,BURNAP P,RANA O.Can we predict a riot?Disruptive event detection using Twitter[J].ACM Transactions on Internet Technology,2017,17(2):1-26. [35]ZHANG W,QI G,PAN G,et al.City-scale social event detection and evaluation with taxi traces[J].ACM Transactions on Intelligent Systems and Technology,2015,6(3):1-20. [36]KELLY S,ZHANG X,AHMAD K.Mining multimodal information on social media for increased situational awareness[C]//Proceedings of the 14th International Conference on Information Systems for Crisis Response and Management.2017. [37]LI X,DOINA C.Improving disaster-related tweet classification with a multimodal approach[C]//Proceedings of the 17th International Conference on Information Systems for Crisis Response and Management.2020. [38]MOUZANNAR H,RIZK Y,AWAD M.Damage Identification in Social Media Posts using Multimodal Deep Learning[C]//The 15th International Conference on Information Systems for Crisis Response and Management(ISCRAM).2018. [39]NGUYEN T H,RUDRA K.Towards an interpretable approach to classify and summarize crisis events from microblogs[C]//Proceedings of the ACM Web Conference.2022:3641-3650. [40]HADSELL R,RAO D,RUSU A A,et al.Embracing change:Continual learning in deep neural networks[J].Trends in Cognitive Sciences,2020,24(12):1028-1040. [41]REBUFFI S A,KOLESNIKOV A,SPERL G,et al.ICARL:Incremental classifier and representation learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2001-2010. [42]LOPEZ-PAZ D,RANZATO M A.Gradient episodic memory for continual learning[C]//Advances in Neural Information Processing Systems.2017. [43]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding.[J].arXiv:1810.04805,2018. [44]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [45]HOU S,PAN X,LOY C C,et al.Learning a unified classifier incrementally via rebalancing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:831-839. [46]LI Z,HOIEM D.Learning without forgetting[J].IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,2017,40(12):2935-2947. [47]CACCIA L,ALJUNDI R,ASADI N,et al.New insights on reducing abrupt representation change in online continual learning[J].arXiv:2104.05025,2021. [48]MITTAL S,GALESSO S,BROX T.Essentials for class incre-mental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3513-3522. [49]VITTER J S.Random sampling with a reservoir[J].ACMTransactions on Mathematical Software,1985,11(1):37-57. [50]KOCHKINA E,LIAKATA M,ZUBIAGA A.All-in-one:Multi-task learning for rumour verification[J].arXiv:1806.03713,2018. [51]ZUBIAGA A,LIAKATA M,PROCTER R,et al.Analysinghow people orient to and spread rumours in social media by looking at conversational threads[J].PLoS One,2016,11(3):e0150989. [52]ALAM F,OFLI F,IMRAN M.Crisismmd:Multimodal twitter datasets from natural disasters[C]//Proceedings of the International AAAI Conference on Web and Social Media.2018. [53]BONICELLI L,BOSCHINI M,PORRELLO A,et al.On the effectiveness of lipschitz-driven rehearsal in continual learning[J].Advances in Neural Information Processing Systems,2022,35:31886-31901. [54]ARANI E,SARFRAZ F,ZONOOZ B.Learning fast,learningslow:A general continual learning method based on complementary learning system[J].arXiv:2201.12604,2022. [55]CHA S,CHO S,HWANG D,et al.Rebalancing batch normalization for exemplar-based class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20127-20136. [56]VILLA A,ALCÁZAR J L,ALFARRA M,et al.Pivot:Prompting for video continual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:24214-24223. [57]CHAUDHRY A,DOKANIA P K,AJANTHAN T,et al.Rie-mannian walk for incremental learning:Understanding forgetting and intransigence[C]//Proceedings of the European Conference on Computer vision(ECCV).2018:532-547. [58]PASZKE A,GROSS S,MASSA F,et al.Pytorch:An imperative style,high-performance deep learning library[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc.,2019:8026-8037. [59]KINGMA D P.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
[1] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
|