Computer Science ›› 2025, Vol. 52 ›› Issue (8): 317-325.doi: 10.11896/jsjkx.240900012
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Yongliang1, LI Ziwen1, XU Jiahao 1, JIANG Yuchen 2, CUI Ying 1
CLC Number:
[1]WANG Z H,TONG X R.Research Progress of Multi-agentPath Finding Based on Conflict-based Search Algorithms[J].Computer Science,2023,50(6):358-368. [2]XIN Y X,HUA D Y,ZHANG L.Multi-agent Reinforcement Learning Algorithm Based on AI Planning[J].Computer Science,2024,51(5):179-192. [3]STERN R,STURTEVANT N,FELNER A,et al.Multi-agent pathfinding:Definitions,variants,and benchmarks[C]//Proceedings of the International Symposium on Combinatorial Search.AAAI,2019:151-158. [4]BANFI J,BASILICO N,AMIGONI F.Intractability of time-optimal multirobot path planning on 2D grid graphs with holes[J].IEEE Robotics and Automation Letters,2017,2(4):1941-1947. [5]SHARON G,STERN R,FELNER A,et al.Conflict-basedsearch for optimal multi-agent pathfinding[J].Artificial Intelligence,2015,219:40-66. [6]BARERM,SHARON G,STERN R,et al.Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem[C]//Proceedings of the International Sympo-sium on Combinatorial Search.AAAI,2014:19-27. [7]SHI D X,PENG Y X,YANG H H,et al.DQN-based Multi-agent Motion Planning Method with Deep Reinforcement Lear-ning[J].Computer Science,2024,51(2):268-277. [8]SARTORETTI G,KERR J,SHI Y,et al.Primal:Pathfindingvia reinforcement and imitation multi-agent learning[J].IEEE Robotics and Automation Letters,2019,4(3):2378-2385. [9]CHUNG J,FAYY AD J,YOUNES Y A,et al.Learning team-based navigation:a review of de-ep reinforcement learning techniques for multi-agent pathfinding[J].Artificial Intelligence Review,2024,57(2):41. [10]MA Z,LUO Y,PAN J.Learning selective communication formulti-agent path finding[J].IEEE Robotics and Automation Letters,2021,7(2):1455-1462. [11]ZHANG S Q,ZHANG Q,LIN J.Succinct and robust multi-agent communication with temporal message control[J].Advances in Neural Information Processing Systems,2020,33:17271-17282. [12]LI W,CHEN H,JIN B,et al.Multi-agent path finding with prioritized communication learning[C]//2022 International Conference on Robotics and Automation(ICRA).IEEE,2022:10695-10701. [13]CHEN L,WANG Y,MIAO Z,et al.Transformer-based imitative reinforcement learning for multirobot path planning[J].IEEE Transactions on Industrial Informatics,2023,19(10):10233-10243. [14]MA Z,LUO Y,MA H.Distributed heuristic multi-agent path finding with communication [C]//2021 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2021:8699-8705. [15]WANG Y,XIANG B,HUANG S,et al.SCRIMP:Scalable communication for reinforcement-and imitation-learning-based multi-agent pathfinding[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2023:9301-9308. [16]SONG Z,ZHANG R,CHENG X.HELSA:Hierarchical Rein-forcement Learning with Spatiotemporal Abstraction for Large-Scale Multi-Agent Path Finding[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2023:7318-7325. [17]PHAN T,DRISCOLL J,ROMBERG J,et al.Confidence-Based Curriculum Learning for Multi-Agent Path Finding[J].arXiv:2401.05860,2024. [18]SKRYNNIK A,ANDREYCHUK A,NESTEROVA M,et al.Learn to Follow:Decentralized Lifelong Multi-Agent Pathfin-ding via Planning and Learning [C]//2024 AAAI Conference on Artificial Intelligence.AAAI,2024:17541-17549. [19]SHI D X,HU H M,SONG L N,et al.Multi-agent Reinforcement Learning Method Based on Observation Reconstruction[J].Computer Science,2024,51(4):280-290. [20]KIM D,MOON S,HOSTALLERO D,et al.Learning to schedule communication in multi-agent reinforcement learning[J].arXiv:1902.01554.2019. [21]ZHANG S Q,ZHANG Q,LIN J.Efficient communication inmulti-agent reinforcement learning via variance based control[C]//Advances in Neural Information Processing Systems(NeurIPS).MIT Press,2019:3230-3239. [22]DING Z,HUANG T,LU Z.Learning individually inferred communication for multi-agent cooperation[C]//Advances in Neural Information Processing Systems(NeurIPS).MIT Press,2020:22069-22079. [23]STERN R,STURTEVANT N,FELNER A,et al.Multi-agent pathfinding:Definitions,variants,and benchmarks[C]//Proceedings of the International Symposium on Combinatorial Search(SoCS).AAAI,2019:151-158. [24]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems(NeurIPS).MIT Press,2017:5998-6008. [25]TAN M.Multi-agent reinforcement learning:Independent vs.cooperative agents[C]//Proceedings of the Tenth International Conference on Machine Learning.ACM,1993:330-337. [26]VAN HASSELT H,GUEZ A,SILVER D.Deep reinforcement learning with double q-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2016:2094-2100. [27]WANG Z,SCHAUL T,HESSEL M,et al.Dueling network architectures for deep reinforcement learning[C]//International Conference on Machine Learning.ACM,2016:1995-2003. [28]HORGAN D,QUAN J,BUDDEN D,et al.Distributed priori-tized experience replay[J].arXiv:1803.00933,2018. [29]BENGIO Y,LOURADOUR J,COLLOBERT R,et al.Curriculum learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning.ACM,2009:41-48. [30]LIN Q,MA H.SACHA:Soft actor-critic with heuristic-based attention for partially observable multi-agent path finding[J].IEEE Robotics and Automation Letters,2023,8:5100-5107. |
[1] | FU Wenhao, GE Liyong, WANG Wen, ZHANG Chun. Multi-UAV Path Planning Algorithm Based on Improved Dueling-DQN [J]. Computer Science, 2025, 52(8): 326-334. |
[2] | HUO Dan, YU Fuping, SHEN Di, HAN Xueyan. Research on Multi-machine Conflict Resolution Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(7): 271-278. |
[3] | LIU Qingyun, YOU Xiong, ZHANG Xin, ZUO Jiwei, LI Jia. Review of Path Planning Algorithms for Mobile Robots [J]. Computer Science, 2025, 52(6A): 240900074-10. |
[4] | YE Mingjun, WANG Shujian. UAV Path Planning Based on Improved Dung Beetle Optimization Algorithm [J]. Computer Science, 2025, 52(6A): 240900136-6. |
[5] | WU Zongming, CAO Jijun, TANG Qiang. Online Parallel SDN Routing Optimization Algorithm Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240900018-9. |
[6] | ZHAO Xuejian, YE Hao, LI Hao, SUN Zhixin. Multi-AGV Path Planning Algorithm Based on Improved DDPG [J]. Computer Science, 2025, 52(6): 306-315. |
[7] | WANG Chenyuan, ZHANG Yanmei, YUAN Guan. Class Integration Test Order Generation Approach Fused with Deep Reinforcement Learning andGraph Convolutional Neural Network [J]. Computer Science, 2025, 52(6): 58-65. |
[8] | LI Yuanbo, HU Hongchao, YANG Xiaohan, GUO Wei, LIU Wenyan. Intrusion Tolerance Scheduling Algorithm for Microservice Workflow Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(5): 375-383. |
[9] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[10] | DU Likuan, LIU Chen, WANG Junlu, SONG Baoyan. Self-learning Star Chain Space Adaptive Allocation Method [J]. Computer Science, 2025, 52(3): 359-365. |
[11] | HUO Xingpeng, SHA Letian, LIU Jianwen, WU Shang, SU Ziyue. Windows Domain Penetration Testing Attack Path Generation Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(3): 400-406. |
[12] | CAI Yuliang, LYU Chunhui, HE Qiang, YU Bo, CHEN Dongyue, WANG Youtong, WANG Qiang, LIU Yuxuan, ZHAO Jingjing. Fully Distributed Event Driven Bipartite Consensus Algorithm Based on Reinforcement Learning [J]. Computer Science, 2025, 52(2): 279-290. |
[13] | XU Donghong, LI Bin, QI Yong. Task Scheduling Strategy Based on Improved A2C Algorithm for Cloud Data Center [J]. Computer Science, 2025, 52(2): 310-322. |
[14] | WANG Tianjiu, LIU Quan, WU Lan. Offline Reinforcement Learning Algorithm for Conservative Q-learning Based on Uncertainty Weight [J]. Computer Science, 2024, 51(9): 265-272. |
[15] | LIU Yi, QI Jie. IRRT*-APF Path Planning Algorithm Considering Kinematic Constraints of Unmanned Surface Vehicle [J]. Computer Science, 2024, 51(9): 290-298. |
|