Computer Science ›› 2026, Vol. 53 ›› Issue (1): 187-194.doi: 10.11896/jsjkx.241100029
• Computer Graphics & Multimedia • Previous Articles Next Articles
BU Yunyang, QI Binting, BU Fanliang
CLC Number:
| [1]ZHANG L,WANG S,LIU B.Deep learning for sentiment ana-lysis:A survey[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2018,8(4):e1253. [2]PANG L,ZHU S,NGO C W.Deep multimodal learning for affective analysis and retrieval[J].IEEE Transactions on Multimedia,2015,17(11):2008-2020. [3]ZHU T,LI L,YANG J,et al.Multimodal sentiment analysiswith image-text interaction network[J].IEEE Transactions on Multimedia,2022,25:3375-3385. [4]XU J,HUANG F,ZHANG X,et al.Visual-textual sentiment classification with bi-directional multi-level attention networks[J].Knowledge-Based Systems,2019,178:61-73. [5]TABOADA M,BROOKE J,TOFILOSKI M,et al.Lexicon-based methods for sentiment analysis[J].Computational linguistics,2011,37(2):267-307. [6]RAO Y,LEI J,LIU W,et al.Building emotional dictionary for sentiment analysis of online news[J].World Wide Web,2014,17:723-742. [7]HAMOUDA A,ROHAIM M.Reviews classification usingsentiwordnet lexicon[C]//World Congress on Computer Science and Information Technology.2011:104-105. [8]PANG B,LEE L,VAITHYANATHAN S.Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing.2002:79-86. [9]KIM Y.Convolutional Neural Networks for Sentence Classifica-tion[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:1746-1751. [10]SOCHER R,PERELYGIN A,WU J,et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.2013:1631-1642. [11]AKHTAR M S,GARG T,EKBAL A.Multi-task learning foraspect term extraction and aspect sentiment classification[J].Neurocomputing,2020,398:247-256. [12]MACHAJDIK J,HANBURY A.Affective image classification using features inspired by psychology and art theory[C]//Proceedings of the 18th ACM International Conference on Multimedia.2010:83-92. [13]SIERSDORFER S,MINACK E,DENG F,et al.Analyzing and predicting sentiment of images on the social web[C]//Procee-dings of the 18th ACM International Conference on Multimedia.2010:715-718. [14]BORTH D,JI R,CHEN T,et al.Large-scale visual sentimentontology and detectors using adjective noun pairs[C]//Procee-dings of the 21st ACM International Conference on Multimedia.2013:223-232. [15]YUAN J,MCDONOUGH S,YOU Q,et al.Sentribute:image sentiment analysis from a mid-level perspective[C]//Procee-dings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining.2013:1-8. [16]YOU Q,LUO J,JIN H,et al.Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015. [17]YANG J,SHE D,SUN M.Joint Image Emotion Classification and Distribution Learning via Deep Convolutional Neural Network[C]//IJCAI.2017:3266-3272. [18]LI Z,SUN Q,GUO Q,et al.Visual sentiment analysis based on image caption and adjective-noun-pair description[J].Soft Computing,2021:1-13. [19]WANG M,CAO D,LI L,et al.Microblog sentiment analysisbased on cross-media bag-of-words model[C]//Proceedings of International Conference on Internet Multimedia Computing and Service.2014:76-80. [20]YOU Q,LUO J,JIN H,et al.Joint visual-textual sentimentanalysis with deep neural networks[C]//Proceedings of the 23rd ACM International Conference on Multimedia.2015:1071-1074. [21]LI P,ZHONG P,ZHANG J,et al.Convolutional transformer with sentiment-aware attention for sentiment analysis[C]//2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-8. [22]HE J,YANGA H,ZHANG C,et al.Dynamic Invariant-Specific Representation Fusion Network for Multimodal Sentiment Analysis[J].Computational Intelligence and Neuroscience,2022,2022(1):2105593. [23]LIU H,LI K,FAN J,et al.Social Image-Text Sentiment Classification With Cross-Modal Consistency and Knowledge Distillation[J].IEEE Transactions on Affective Computing,2022,14(4):3332-3344. [24]XU M,LIANG F,SU X,et al.Cmjrt:Cross-modal joint representation transformer for multimodal sentiment analysis[J].IEEE Access,2022,10:131671-131679. [25]CHEN D,SU W,WU P,et al.Joint multimodal sentiment analysis based on information relevance[J].Information Processing &Management,2023,60(2):103193. [26]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [27]LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mized bert pretraining approach[J].arXiv:1907,11692,2019. [28]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010.. [29]WANG J,YANG Y,LIU K,et al.CiteNet:Cross-modal incongruity perception network for multimodal sentiment prediction[J].Knowledge-Based Systems,2024,295:111848. [30]ZHAN F,YU Y,WU R,et al.Multimodal image synthesis and editing:A survey and taxonomy[J].arXiv:2112.13592,2023. [31]NIU T,ZHU S,PANG L,et al.Sentiment analysis on multi-view social data[C]//MultiMedia Modeling:22nd International Conference(MMM 2016).Miami,FL,USA,Part II 22.2016:15-27. [32]XU N,MAO W.Multisentinet:A deep semantic network formultimodal sentiment analysis[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2017:2399-2402. [33]WOLF T,DEBUT L,SANH V,et al.Transformers:State-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.2020:38-45. [34]LOSHCHILOV I,HUTTER F.Decoupled weight decay regularization[J].arXiv:1711,05101,2017. [35]ZHOU P,SHI W,TIAN J,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:207-212. [36]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810,04805,2018. [37]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [38]YANG X,FENG S,WANG D,et al.Image-text multimodalemotion classification via multi-view attentional network[J].IEEE Transactions on Multimedia,2020,23:4014-4026. [39]XU N.Analyzing multimodal public sentiment based on hierarchical semantic attentional network[C]//2017 IEEE International Conference on Intelligence and Security Informatics(ISI).2017,IEEE:152-154. [40]CAI G,XIA B.Convolutional neural networks for multimediasentiment analysis[C]//4th CCF Conference Natural Language Processing and Chinese Computing(NLPCC 2015).2015:159-167. [41]XU N,MAO W,CHEN G.A co-memory network for multimodal sentiment analysis[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:929-932. [42]YANG X,FENG S,ZHANG Y,et al.Multimodal sentiment detection based on multi-channel graph neural networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:328-339. [43]YE J,ZHOU J,TIAN J,et al.Sentiment-aware multimodal pre-training for multimodal sentiment analysis[J].Knowledge-Based Systems,2022,258:110021. [44]WEI Y,YUAN S,YANG R,et al.Tackling modality heterogeneity with multi-view calibration network for multimodal sentiment detection[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:5240-5252. [45]VAN DER MAATEN L,HINTON G.Visualizing data usingt-SNE[J].Journal of Machine Learning Research,2008,9(86):2579-2605. |
| [1] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
| [2] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
| [3] | FENG Guang, LIN Yibao, ZHONG Ting, ZHENG Runting, HUANG Junhui, LIU Tianxiang, YANG Yanru. Multimodal Sentiment Analysis Based on Dominant Attention and Multi-space Domain Information Collaboration [J]. Computer Science, 2025, 52(11A): 250200022-9. |
| [4] | PENG Guangchuan, WU Fei, HAN Lu, JI Yimu, JING Xiaoyuan. Fake News Detection Based on Cross-modal Interaction and Feature Fusion Network [J]. Computer Science, 2024, 51(11): 23-29. |
| [5] | CHEN Zhen, PU Yuanyuan, ZHAO Zhengpeng, XU Dan, QIAN Wenhua. Multimodal Sentiment Analysis Based on Adaptive Gated Information Fusion [J]. Computer Science, 2023, 50(3): 298-306. |
| [6] | NIE Xiu-shan, PAN Jia-nan, TAN Zhi-fang, LIU Xin-fang, GUO Jie, YIN Yi-long. Overview of Natural Language Video Localization [J]. Computer Science, 2022, 49(9): 111-122. |
|
||