Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230400073-7.doi: 10.11896/jsjkx.230400073
• Image Processing & Multimedia Technolog • Previous Articles Next Articles
ZHANG Jie1, LU Miaoxin1, LI Jiakang2, XU Dayong2, HUANG Wenxiao1, SHI Xiaoping3
CLC Number:
[1]LIU D,JIA J L,ZHAO Y Q,et al.Overview of Image Denoising Methods Based on Deep Learning[J].Computer Engineering and Applications,2021,57(7):1-13. [2]BUADES A,COLL B,MORELJ M.A non-local agorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).IEEE,2005:60-65. [3]DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. [4]GU S,ZHANG L,ZUO W,et al.Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:2862-2869. [5]GONDARA L.Medical image denoising using convolutional denoising autoencoders[C]//2016 IEEE 16th International Conference on Data Mining Workshops(ICDMW).IEEE,2016:241-246. [6]ZHANG K,ZUO W,CHEN Y,et al.Beyond a gaussian denoi-ser:Residual learning of deep cnn for image denoising[J].IEEE Transactions on Image Processing,2017,26(7):3142-3155. [7]ZHANG K,ZUO W,ZHANG L.FFDNet:Toward a fast andflexible solution for CNN-based image denoising[J].IEEE Transactions on Image Processing,2018,27(9):4608-4622. [8]LUO R Z,WANG R J,ZHANG K,et al.Image Denoising Methodof Residual Convolution Auto-Encoder Network[J].Computer Simulation,2021,38(5):455-461. [9]LEI J S,YAN C Y,YANG Z G.Convolutional Auto-Encoder for Image Denoising Based on Inception Model[J].Computer Applications and Software,2021,38(2):221-226,322. [10]MA Z P,TAN L D.Blind Image Denoising Method Based onWavelet Autoencoder[J/OL].Journal of Huazhong University of Science and Technology(Natural Science Edition).(2022-12-14)[2023-06-25].https://doi.org/10.13245/j.hust.240208. [11]YIN H T,WANG T Y.Image Denoising Algorithm Based on Deep Multi-scale Convolution Sparse Coding[J].Computer Science,2023,50(4):133-140. [12]MAJUMDAR A.Blind denoising autoencoder[J].IEEE Transactions on Neural Networks and Learning Systems,2018,30(1):312-317. [13]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [14]ZHANG Y,TIAN Y,KONGY,et al.Residual dense network for image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(7):2480-2495. [15]LU Y.The level weighted structural similarity loss:A step away from MSE[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):9989-9990. [16]SNELL J,RIDGEWAY K,LIAO R,et al.Learning to generate images with perceptual similarity metrics[C]//2017 IEEE International Conference on Image Processing(ICIP).IEEE,2017:4277-4281. [17]ZHAO H,GALLO O,FROSIO I,et al.Loss functions for image restoration with neural networks[J].IEEE Transactions on Computational Lmaging,2016,3(1):47-57. [18]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.PMLR,2015:448-456. [19]MA K,DUANMU Z,WU Q,et al.Waterloo exploration database:New challenges for image quality assessment models[J].IEEE Transactions on Image Processing,2016,26(2):1004-1016. [20]TIAN C,XU Y,LI Z,et al.Attention-guided CNN for image denoising[J].Neural Networks,2020,124:117-129. [21]MAIRAL J,BACH F,PONCE J,et al.Non-local sparse models for image restoration[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:2272-2279. [22]ROTH S,BLACK M J.Fields of experts:A framework forlearning image priors[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).IEEE,2002:860-867. [23]SARA U,AKTER M,UDDINM S.Image quality assessment through FSIM,SSIM,MSE and PSNR-a comparative study[J].Journal of Computer and Communications,2019,7(3):8-18. [24]TOMASI C,MANDUCHI R.Bilateral filtering for gray and color images[C]//Sixth International Conference on Computer Vision(IEEE Cat.No.98CH36271).IEEE,1998:839-846. [25]LIU P,ZHANG H,ZHANG K,et al.Multi-level wavelet-CNN for image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2018:773-782. |
[1] | YUAN Zhen, LIU Jinfeng. Denoising Autoencoders Based on Lossy Compress Coding [J]. Computer Science, 2024, 51(6A): 230400172-7. |
[2] |
XUE Jinqiang, WU Qin.
Progressive Multi-stage Image Denoising Algorithm Combining Convolutional Neural Network and Multi-layer Perceptron [J]. Computer Science, 2024, 51(4): 243-253. |
[3] | YIN Haitao, WANG Tianyou. Image Denoising Algorithm Based on Deep Multi-scale Convolution Sparse Coding [J]. Computer Science, 2023, 50(4): 133-140. |
[4] | LI Yueyue, LIU Wanping, HUANG Dong. Image Denoising Network Model Combined with Multi-head Attention Mechanism [J]. Computer Science, 2023, 50(11A): 230100091-8. |
[5] | HAN Jie, CHEN Jun-fen, LI Yan, ZHAN Ze-cong. Self-supervised Deep Clustering Algorithm Based on Self-attention [J]. Computer Science, 2022, 49(3): 134-143. |
[6] | WU Yong, LIU Yong-jian, TANG Tang, WANG Hong-lin, ZHENG Jian-cheng. Hyperspectral Image Denoising Based on Robust Low Rank Tensor Restoration [J]. Computer Science, 2021, 48(11A): 303-307. |
[7] | CAO Yi-qin, XIE Shu-hui. Category-specific Image Denoising Algorithm Based on Grid Search [J]. Computer Science, 2020, 47(11): 168-173. |
[8] | LI Gui-hui,LI Jin-jiang,FAN Hui. Image Denoising Algorithm Based on Adaptive Matching Pursuit [J]. Computer Science, 2020, 47(1): 176-185. |
[9] | XIAO Jia, ZHANG Jun-hua, MEI Li-ye. Improved Block-matching 3D Denoising Algorithm [J]. Computer Science, 2019, 46(6): 288-294. |
[10] | XU Shao-ping, ZENG Xiao-xia ,JIANG Yin-nan ,LIN Guan-xi ,TANG Yi-ling. Fast Noise Level Estimation Algorithm Based on Nonlinear Rectification of Smallest Eigenvalue [J]. Computer Science, 2018, 45(7): 219-225. |
[11] | ZHANG Zhen-zhen ,WANG Jian-lin. Dictionary Learning Image Denoising Algorithm Combining Second Generation Bandelet Transform Block [J]. Computer Science, 2018, 45(7): 264-270. |
[12] | ZHAO Jie, MA Yu-jiao and LIU Shuai-qi. Image Denoising Optimization Algorithm Combined with Visual Saliency [J]. Computer Science, 2018, 45(2): 312-317. |
[13] | JIAO Li-juan and WANG Wen-jian. Sparsity-adaptive Image Denoising Algorithm Based on Difference Coefficient [J]. Computer Science, 2018, 45(2): 94-97. |
[14] | CHEN Peng, ZHANG Jian-wei. Image Denoising Method Combining Kernel Function and Nonlinear Partial Differential Equation [J]. Computer Science, 2018, 45(11): 278-282. |
[15] | MA Hong-jin, NIE Yu-feng. Multi-directional Weighted Mean Denoising Algorithm Based on Two Stage Noise Restoration [J]. Computer Science, 2018, 45(10): 250-254. |
|