Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230400172-7.doi: 10.11896/jsjkx.230400172
• Image Processing & Multimedia Technolog • Previous Articles Next Articles
YUAN Zhen, LIU Jinfeng
CLC Number:
[1]DWIVEDI N,SINGH D K.Review of deep learning techniques for gender classification in images[C]//Harmony Search and Nature Inspired Optimization Algorithms:Theory and Applications(ICHSA 2018).Springer Singapore,2019:1089-1099. [2]BAJAJ K,SINGH D K,ANSARI M A.Autoencoders baseddeep learner for image denoising[J].Procedia Computer Science,2020,171:1535-1541. [3]LEHTINEN J,MUNKBERG J,HASSELGREN J,et al.Noise2Noise:Learning image restoration without clean data[J].arXiv:1803.04189,2018. [4]ELAD M,KAWAR B,VAKSMAN G.Image denoising:The deep learning revolution and beyond-a survey paper[J].SIAM Journal on Imaging Sciences,2023,16(3):1594-1654. [5]XIE J,XU L,CHEN E.Image denoising and inpainting with deep neural networks[J].Advances in Neural Information Processing Systems,2012,25. [6]DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306. [7]CANDÈS E J,WAKIN M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30. [8]BARANIUK R G.Compressive sensing[lecture notes][J].IEEE Signal Processing Magazine,2007,24(4):118-121. [9]DUARTE M F,DAVENPORT M A,TAKHAR D,et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91. [10]ZHANG K,ZUO W,CHEN Y,et al.Beyond a gaussian denoiser:Residual learning of deep cnn for image denoising[J].IEEE Transactions on Image Processing,2017,26(7):3142-3155. [11]ZHANG K,ZUO W,ZHANG L.FFDNet:Toward a fast andflexible solution for CNN-based image denoising[J].IEEE Transactions on Image Processing,2018,27(9):4608-4622. [12]TIAN C,XU Y,ZUO W,et al.Designing and training of a dual CNN for image denoising[J].Knowledge-Based Systems,2021,226:106949. [13]LIANG J,CAO J,SUN G,et al.Swinir:Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:1833-1844. [14]MA Y,DERKSEN H,HONG W,et al.Segmentation of multivariate mixed data via lossy data coding and compression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1546-1562. [15]YU Y D,KWAN H R C,YOU C,et al.Learning diverse and discriminative representations via the principle of maximal coding rate reduction[C]//Advances in Neural Information Processing Systems.2020. [16]CHAN K H R,YU Y,YOU C,et al.ReduNet:A white-box deep network from the principle of maximizing rate reduction[J].The Journal of Machine Learning Research,2022,23(1):4907-5009. [17]HINTON G E,ZEMEL R.Autoencoders,minimum description length and Helmholtz free energy[J].Advances in Neural Information Processing Systems,1993,6. [18]ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein gene-rative adversarial networks[C]//International Conference on Machine Learning.PMLR,2017:214-223. [19]ZHAO S,SONG J,ERMON S.Infovae:Information maximizing variational autoencoders[J].arXiv:1706.02262,2017. [20]DAI X,TONG S,LI M,et al.Closed-loop data transcription to an ldr via minimaxing rate reduction[J].arXiv:2111.06636,2021. [21]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
[1] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[2] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[3] | DAI Yongdong, JIN Yang, DAI Yufan, FU Jing, WANG Maofei, LIU Xi. Study on Intelligent Defect Recognition Algorithm of Aerial Insulator Image [J]. Computer Science, 2024, 51(6A): 230700172-5. |
[4] | LU Dongsheng, LONG Hua. Method for Homologous Spectrum Monitoring Data Identification Based on Spectrum SIFT [J]. Computer Science, 2024, 51(6A): 230300177-7. |
[5] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[6] | HUANG Rui, XU Ji. Text Classification Based on Invariant Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230900018-5. |
[7] | WEI Niannian, HAN Shuguang. New Solution for Traveling Salesman Problem Based on Graph Convolution and AttentionNeural Network [J]. Computer Science, 2024, 51(6A): 230700222-8. |
[8] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
[9] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[10] | ZHANG Jie, LU Miaoxin, LI Jiakang, XU Dayong, HUANG Wenxiao, SHI Xiaoping. Residual Dense Convolutional Autoencoder for High Noise Image Denoising [J]. Computer Science, 2024, 51(6A): 230400073-7. |
[11] | ZHANG Huazhong, PAN Yuekai, TU Xiaoguang, LIU Jianhua, XU Luopeng, ZHOU Chao. Facial Expression Recognition Integrating 3D Facial Dynamic Information and Optical Flow Information [J]. Computer Science, 2024, 51(6A): 230700210-7. |
[12] | ZHAO Ziqi, YANG Bin, ZHANG Yuanguang. Hierarchical Traffic Flow Prediction Model Based on Graph Autoencoder and GRU Network [J]. Computer Science, 2024, 51(6A): 230400148-6. |
[13] | PENG Bo, LI Yaodong, GONG Xianfu. Improved K-means Photovoltaic Energy Data Cleaning Method Based on Autoencoder [J]. Computer Science, 2024, 51(6A): 230700070-5. |
[14] | ZHAO Tong, SHA Chaofeng. Revisiting Test Sample Selection for CNN Under Model Calibration [J]. Computer Science, 2024, 51(6): 34-43. |
[15] | WU Huinan, XING Hongjie, LI Gang. Deep Multiple-sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior [J]. Computer Science, 2024, 51(6): 135-143. |
|