Computer Science ›› 2024, Vol. 51 ›› Issue (11): 23-29.doi: 10.11896/jsjkx.231200186
• Social Media Fake News Detection • Previous Articles Next Articles
PENG Guangchuan1, WU Fei1, HAN Lu1, JI Yimu2, JING Xiaoyuan3
CLC Number:
[1] KHATTAR D,GOUD J S,GUPTA M,et al.Mvae:Multimodal variational autoencoder for fake news detection[C]//The World Wide Web Conference.2019:2915-2921. [2] CHEN Y,LI D,ZHANG P,et al.Cross-modal ambiguity lear-ning for multimodal fake news detection[C]//The World Wide Web Conference.2022:2897-2905. [3] BOIDIDOU C,PAPADOPOULOS S,ZAMPOGLOU M,et al.Detection and visualization of misleading content on twitter[J].International Journal of Multimedia Information Retrieval,2018,7(1):71-86. [4] JIN Z,CAO J,GUO H,et al.Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//International Conference on Multimedia.2017:795-816. [5] QIAN F,GONG C,SHARMA K,et al.Neural user response generator:Fake news detection with collective user intelligence[C]//International Joint Conference on Artificial Intelligence.2018:3834-3840. [6] AJAO O,GARG A,DA COSTA-ABREU M.Exploring content-based and meta-data analysis for detecting fake news infodemic:a case study on covid-19[C]//International Conference on Pattern Recognition Systems.2022:134-137. [7] NAN Q,CAO J,ZHU Y,et al.Mdfend:Multi-domain fake news detection[C]//ACM International Conference on Information &Knowledge Management.2021:3343-3347. [8] QI P,CAO J,YANG T,et al.Exploiting multi-domain visual information for fake news detection[C]//IEEE International Conference on Data Mining.2019:518-527. [9] WANG Y,MA F,JIN Z,et al.Eann:Event adversarial neural networks for multi-modal fake news detection[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:849-857. [10] ZHANG H,FANG Q,QIAN S,et al.Multi-modal knowledge-aware event memory network for social media rumor detection[C]//ACM International Conference on Multimedia.2019:1942-1951. [11] ZHOU X,WU J,ZAFARANI R.Safe:Similarity-aware multi-modal fake news detection[C]//Advances in Knowledge Discovery and Data Mining.2020:354-367. [12] XUE J,WANG Y,TIAN Y,et al,WEI L.Detecting fake news by exploring the consistency of multimodal data[J].Information Processing & Management,2021,58(5):102610. [13] WU Y,ZHAN P,ZHANG Y,et al.Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics.2021:2560-2569. [14] SINGHAL S,PANDEY T,MREIG S,et al.Leveraging intraand inter modality relationship for multimodal fake news detection[C]//The World Wide Web Conference.2022:726-734. [15] MA J,LIU Y,LIU M,et al.Curriculum contrastive learning for fake news detection[C]//ACM International Conference on Information & Knowledge Management.2022:4309-4313. [16] WANG L,ZHANG C,XU H,et al.Cross-modal contrastivelearning for multimodal fake news detection[J].arXiv:2302.14057,2023. [17] ZHOU Y,YING Q,QIAN Z,et al.Multimodal fake news detection via clip-guided learning[J].arXiv:2022,2205.14304. [18] XU W,WU J,LIU Q,et al.Evidence-aware fake news detection with graph neural networks[C]//The World Wide Web Conference.2022:2501-2510. [19] WU Z,PI D,CHEN J,et al.Rumor detection based on propagation graph neural network with attention mechanism[J].Expert Systems with Applications,2020,158:113595. [20] YANG X,LYU Y,TIAN T,et al.Rumor detection on socialmedia with graph structured adversarial learning[C]//International Joint Conferences on Artificial Intelligence.2021:1417-1423. [21] LU Y,LI C.GCAN:Graph-aware co-attention networks for explainable fake news detection on social media[J].arXiv:2004.11648,2020. |
[1] | ZHANG Lu, DUAN Youxiang, LIU Juan, LU Yuxi. Chinese Geological Entity Relation Extraction Based on RoBERTa and Weighted Graph Convolutional Networks [J]. Computer Science, 2024, 51(8): 297-303. |
[2] | YUAN Lining, FENG Wengang, LIU Zhao. Multi-channel Graph Convolutional Networks Enhanced by Label Propagation Algorithm [J]. Computer Science, 2024, 51(8): 304-312. |
[3] | ZHANG Xiaoxi, LI Dongxi. Cancer Subtype Prediction Based on Similar Network Fusion Algorithm [J]. Computer Science, 2024, 51(6A): 230500006-7. |
[4] | HOU Lei, LIU Jinhuan, YU Xu, DU Junwei. Review of Graph Neural Networks [J]. Computer Science, 2024, 51(6): 282-298. |
[5] | LI Yilin, SUN Chengsheng, LUO Lin, JU Shenggen. Aspect-based Sentiment Classification for Word Information Enhancement Based on Sentence Information [J]. Computer Science, 2024, 51(6): 299-308. |
[6] | YUAN Rong, PENG Lilan, LI Tianrui, LI Chongshou. Traffic Flow Prediction Model Based on Dual Prior-adaptive Graph Neural ODE Network [J]. Computer Science, 2024, 51(4): 151-157. |
[7] | ZHANG Mingdao, ZHOU Xin, WU Xiaohong, QING Linbo, HE Xiaohai. Unified Fake News Detection Based on Semantic Expansion and HDGCN [J]. Computer Science, 2024, 51(4): 299-306. |
[8] | DUAN Yuxiao, HU Yanli, GUO Hao, TAN Zhen, XIAO Weidong. Study on Improved Fake Information Detection Method Based on Cross-modal CorrelationAmbiguity Learning [J]. Computer Science, 2024, 51(4): 307-313. |
[9] | YANG Yufan, YUAN Liming, WANG Ke, LI Hongyi, LI Yixuan, YAO Yujia, WANG Jingyi. Grading Model for Diabetic Retinopathy Based on Graph Convolutional Network [J]. Computer Science, 2024, 51(11A): 231000042-5. |
[10] | CHEN Jing, ZHOU Gang, LI Shunhang, ZHENG Jiali, LU Jicang, HAO Yaohui. Review of Fake News Detection on Social Media [J]. Computer Science, 2024, 51(11): 1-14. |
[11] | WU Chenglong, HU Minghao, LIAO Jinzhi, YANG Hui, ZHAO Xiang. Study on Fake News Detection Technology in Resource-constrained Environments [J]. Computer Science, 2024, 51(11): 15-22. |
[12] | YU Yongxin, JI Ke, GAO Yuan, CHEN Zhenxiang, MA Kun, ZHAO Xiaofan. Multi-source Heterogeneous Data Progressive Fusion for Fake News Detection [J]. Computer Science, 2024, 51(11): 30-38. |
[13] | ZHU Feng, ZHANG Tinghui, LI Peng, XU He. Multimodal Adaptive Fusion Based Detection of Fake News in Short Videos [J]. Computer Science, 2024, 51(11): 39-46. |
[14] | LI Ke, YANG Ling, ZHAO Yanbo, CHEN Yonglong, LUO Shouxi. EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction [J]. Computer Science, 2023, 50(9): 318-330. |
[15] | DUAN Jianyong, YANG Xiao, WANG Hao, HE Li, LI Xin. Document-level Relation Extraction of Graph Attention Convolutional Network Based onInter-sentence Information [J]. Computer Science, 2023, 50(6A): 220800189-6. |
|