Computer Science ›› 2024, Vol. 51 ›› Issue (11): 15-22.doi: 10.11896/jsjkx.240700099
• Social Media Fake News Detection • Previous Articles Next Articles
WU Chenglong1, HU Minghao2, LIAO Jinzhi3, YANG Hui4, ZHAO Xiang1
CLC Number:
[1] DUAN Y X,HU Y L,GUO H,et al.Research on improvedcross-modal association ambiguity learning for fake news detection[J].Computer Science,2024,51(4):307-313. [2] WANG J,WANG Y C,HUANG M J.Fake News in Social Networks:Definition,Detection,and Control[J].Computer Science,2021,48(8):263-277. [3] LI Z Y,LI J.Fake news detection method based on multimodal attention network using contrastive learning[J].China Science Papers,2023,18(11):1192-1197. [4] LIANG Y,TUO H T,AIMUDULA A.Multimodal fake news detection based on multi-layer CNN feature fusion and multi-classifier hybrid prediction[J].Computer Engineering & Science,2023,45(6):1087-1096. [5] LAO A,ZHANG Q,SHI C,et al.Frequency spectrum is more effective for multimodal representation and fusion:a multimodal spectrum rumor detector[J].arXiv:2312.11023,2023. [6] YING Q,HU X,ZHOU Y,et al.Bootstrapping multi-view representations for fake news detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI,2023,37(4):5384-5392. [7] RADFORD A,KIM J W,HALLACY C,et al.Learning trans-ferable visual models from natural language supervision[C]//Proceedings of the International Conference on Machine Lear-ning.PMLR,2021:8748-8763. [8] LI J,LI D,XIONG C,et al.BLIP:bootstrapping language-image pre-training for unified vision-language understanding and ge-neration[C]//Proceedings of the International Conference on Machine Learning.PMLR,2022:12888-12900. [9] LI J,LI D,SAVARESE S,et al.BLIP-2:bootstrapping language-image pre-training with frozen image encoders and large language models[C]//Proceedings of the International Confe-rence on Machine Learning.PMLR,2023:19730-19742. [10] ALAYRAC J B,DONAHUE J,LUC P,et al.Flamingo:a visual language model for few-shot learning[J].Advances in Neural Information Processing Systems,2022,35:23716-23736. [11] ZHANG B,ZHANG P,DONG X,et al.Long-CLIP:unlockingthe long-text capability of CLIP[J].arXiv:2403.15378,2024. [12] WEI J,TAY Y,BOMMASANI R,et al.Emergent abilities of large language models[J].arXiv:2206.07682,2022. [13] LU H,LIU W,ZHANG B,et al.DeepSeek-VL:towards real-world vision-language understanding[J].arXiv:2403.05525,2024. [14] YANG A,XIAO B,WANG B,et al.Baichuan 2:open large-scale language models[J].arXiv:2309.10305,2023. [15] BAI J,BAI S,YANG S,et al.Qwen-vl:a versatile vision-lan-guage model for understanding,localization,text reading,and beyond[J].arXiv:2308.12966,2023. [16] SMITH S,PATWARY M,NORICK B,et al.Using DeepSpeed and Megatron to train Megatron-Turing NLG 530B,a large-scale generative language model[J].arXiv:2201.11990,2022. [17] QI P,CAO J,LI X,et al.Improving fake news detection byusing an entity-enhanced framework to fuse diverse multimodal clues[C]//Proceedings of the 29th ACM International Confe-rence on Multimedia.New York:ACM,2021:1212-1220. [18] VERMA P K,AGRAWAL P,AMORIM I,et al.WELFake:word embedding over linguistic features for fake news detection[J].IEEE Transactions on Computational Social Systems,2021,8(4):881-893. [19] SHU K,CUI L,WANG S,et al.Defend:explainable fake news detection[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2019:395-405. [20] WU L,RAO Y,ZHANG C,et al.Category-controlled encoder-decoder for fake news detection[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(2):1242-1257. [21] HU L,YANG T,ZHANG L,et al.Compare to the knowledge:graph neural fake news detection with external knowledge[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg:ACL,2021:754-763. [22] ABDALI S,GURAV R,MENON S,et al.Identifying misinformation from website screenshots[C]//Proceedings of the International AAAI Conference on Web and Social Media.Palo Alto:AAAI,2021:2-13. [23] QI P,BU Y,CAO J,et al.Fakesv:a multimodal benchmark with rich social context for fake news detection on short video platforms[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI,2023:14444-14452. [24] LI S,YAO T,LI S,et al.Semantic-enhanced multimodal fusion network for fake news detection[J].International Journal of Intelligent Systems,2022,37(12):12235-12251. [25] BAZMI P,ASADPOUR M,SHAKERY A.Multi-view co-attention network for fake news detection by modeling topic-specific user and news source credibility[J].Information Processing & Management,2023,60(1):103146. [26] DAVOUDI M,MOOSAVI M R,SADREDDINI M H.DSS:a hybrid deep model for fake news detection using propagation tree and stance network[J].Expert Systems with Applications,2022,198:116635. [27] SINGHAL S,DHAWAN M,SHAH R R,et al.Inter-modality discordance for multimodal fake news detection[C]//Procee-dings of the 3rd ACM International Conference on Multimedia in Asia.New York:ACM,2021:1-7. [28] WU L,LIU P,ZHANG Y.See how you read? Multi-reading habits fusion reasoning for multimodal fake news detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI,2023:13736-13744. [29] LI P,SUN X,YU H,et al.Entity-oriented multi-modal align-ment and fusion network for fake news detection[J].IEEE Transactions on Multimedia,2022,24:3455-3468. [30] LUVEMBE A M,LI W,LI S,et al.Dual emotion based fake news detection:a deep attention-weight update approach[J].Information Processing & Management,2023,60(4):103354. [31] BOULAHIA S Y,AMAMRA A,MADI M R,et al.Early,inter-mediate and late fusion strategies for robust deep learning-based multimodal action recognition[J].Machine Vision and Applications,2021,32(6):121. [32] MA Y,CAO Y,HONG Y C,et al.Large language model is not a good few-shot information extractor,but a good reranker for hard samples![J].arXiv:2303.08559,2023. [33] DRIESS D,XIA F,SAJJADI M S M,et al.Palm-e:an embodied multimodal language model[J].arXiv:2303.03378,2023. [34] ZHANG Q,ZUO S,LIANG C,et al.Platon:pruning large trans-former models with upper confidence bound of weight importance[C]//Proceedings of the International Conference on Machine Learning.PMLR,2022:26809-26823. [35] FANG G,MA X,SONG M,et al.DepGraph:towards any structural pruning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:16091-16101. [36] MCCARLEY J S,CHAKRAVARTI R,SIL A.Structured pru-ning of a BERT-based question answering model[J].arXiv:1910.06360,2019. [37] SUN M,LIU Z,BAIR A,et al.A simple and effective pruning approach for large language models[J].arXiv:2306.11695,2023. [38] DAS A B,RAMAMOORTHY A.Coded sparse matrix computation schemes that leverage partial stragglers[J].IEEE Transactions on Information Theory,2022,68(6):4156-4181. [39] FRANTAR E,ALISTARH D.SparseGPT:massive languagemodels can be accurately pruned in one-shot[C]//Proceedings of the International Conference on Machine Learning.PMLR,2023:10323-10337. [40] SHI D,TAO C,JIN Y,et al.UPOP:unified and progressivepruning for compressing vision-language transformers[C]//Proceedings of the International Conference on Machine Learning.PMLR,2023:31292-31311. [41] SUNG Y L,YOON J,BANSAL M.EcoFLAP:efficient coarse-to-fine layer-wise pruning for vision-language models[J].ar-Xiv:2310.02998,2023. [42] JIN Z,CAO J,GUO H,et al.Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 25th ACM International Conference on Multimedia.New York:ACM,2017:795-816. |
[1] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[2] | ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161. |
[3] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[4] | GAO Yang, CAO Yangjie, DUAN Pengsong. Lightweighting Methods for Neural Network Models:A Review [J]. Computer Science, 2024, 51(6A): 230600137-11. |
[5] | SUN Jing, WANG Xiaoxia. Convolutional Neural Network Model Compression Method Based on Cloud Edge Collaborative Subclass Distillation [J]. Computer Science, 2024, 51(5): 313-320. |
[6] | XU Chenhan, HUANG He, SUN Yu'e, DU Yang. Multi-level Pruning Obfs4 Obfuscated Traffic Recognition Method Based on Partial Data [J]. Computer Science, 2024, 51(4): 39-47. |
[7] | DUAN Yuxiao, HU Yanli, GUO Hao, TAN Zhen, XIAO Weidong. Study on Improved Fake Information Detection Method Based on Cross-modal CorrelationAmbiguity Learning [J]. Computer Science, 2024, 51(4): 307-313. |
[8] | ZHENG Cheng, SHI Jingwei, WEI Suhua, CHENG Jiaming. Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-basedSentiment Analysis [J]. Computer Science, 2024, 51(3): 205-213. |
[9] | CHEN Haiyan, MAO Lihong. Improved Lightweight Aerial Photography Object Detection Model Based on YOLOv5s [J]. Computer Science, 2024, 51(11A): 231100119-8. |
[10] | CHEN Jing, ZHOU Gang, LI Shunhang, ZHENG Jiali, LU Jicang, HAO Yaohui. Review of Fake News Detection on Social Media [J]. Computer Science, 2024, 51(11): 1-14. |
[11] | PENG Guangchuan, WU Fei, HAN Lu, JI Yimu, JING Xiaoyuan. Fake News Detection Based on Cross-modal Interaction and Feature Fusion Network [J]. Computer Science, 2024, 51(11): 23-29. |
[12] | YU Yongxin, JI Ke, GAO Yuan, CHEN Zhenxiang, MA Kun, ZHAO Xiaofan. Multi-source Heterogeneous Data Progressive Fusion for Fake News Detection [J]. Computer Science, 2024, 51(11): 30-38. |
[13] | ZHU Feng, ZHANG Tinghui, LI Peng, XU He. Multimodal Adaptive Fusion Based Detection of Fake News in Short Videos [J]. Computer Science, 2024, 51(11): 39-46. |
[14] | LIU Yubo, GUO Bin, MA Ke, QIU Chen, LIU Sicong. Design of Visual Context-driven Interactive Bot System [J]. Computer Science, 2023, 50(9): 260-268. |
[15] | GU Xizhi, SHAO Yingxia. Fast Computation Graph Simplification via Influence-based Pruning for Graph Neural Network [J]. Computer Science, 2023, 50(1): 52-58. |
|