Computer Science ›› 2024, Vol. 51 ›› Issue (11): 174-181.doi: 10.11896/jsjkx.231000009
• Computer Graphics & Multimedia • Previous Articles Next Articles
GENG Huantong1,2,3, LI Jiaxing1, JIANG Jun1, LIU Zhenyu1, FAN Zichen4
CLC Number:
[1] FENG D,HAASE-SCHÜTZ C,ROSENBAUM L,et al.Deepmulti-modal object detection and semantic segmentation for autonomous driving:Datasets,methods,and challenges[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(3):1341-1360. [2] ASGARI T S,ABHISHEK K,COHEN J P,et al.Deep semantic segmentation of natural and medical images:a review[J].Artificial Intelligence Review,2021,54:137-178. [3] YUAN X,SHI J,GU L.A review of deep learning methods for semantic segmentation of remote sensing imagery[J].Expert Systems with Applications,2021,169:114417. [4] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [5] CHEN Q S,ZHANG Y,PU L,et al.Multi-path Semantic Segmentation Based on Edge Optimization and Global Modeling[J].Computer Science,2023,50(S1):2207137. [6] WANG Y,ZHOU Q,LIU J,et al.Lednet:A lightweight encoder-decoder network for real-time semantic segmentation[C]//2019 IEEE International Conference on Image Processing(ICIP).IEEE,2019:1860-1864. [7] LI X,YOU A,ZHU Z,et al.Semantic flow for fast and accurate scene parsing[C]//Computer Vision-ECCV 2020:16th Euro-pean Conference,Glasgow,UK,August 23-28,2020,Procee-dings,Part I 16.Springer International Publishing,2020:775-793. [8] XU J,XIONG Z,BHATTACHARYYA S P.PIDNet:A Real-Time Semantic Segmentation Network Inspired by PID Controllers[C]//Proceedings of the IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition.2023:19529-19539. [9] BEZDEK J C.A convergence theorem for the fuzzy ISODATAclustering algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1980(1):1-8. [10] EMARA T,MUNIM H E,ABBAS H M,et al.LiteSeg:A Novel Lightweight ConvNet for Semantic Segmentation[J].arXiv:1912.06683,2019. [11] NIRKIN Y,WOLF L,HASSNER T.Hyperseg:Patchwise hy-pernetwork for real-time semantic segmentation[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4061-4070. [12] RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer Interna-tional Publishing,2015:234-241. [13] FAN M,LAI S,HUANG J,et al.Rethinking bisenet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:9716-9725. [14] PENG J,LIU Y,TANG S,et al.Pp-liteseg:A superior real-time semantic segmentation model[J].arXiv:2204.02681,2022. [15] YU C,WANG J,PENG C,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:325-341. [16] YU C,GAO C,WANG J,et al.Bisenet v2:Bilateral networkwith guided aggregation for real-time semantic segmentation[J].International Journal of Computer Vision,2021,129(11):3051-3068. [17] HONG Y D,PAN H H,SUN W C,et al.Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[J].arXiv:2101.06085,2021. [18] HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [19] LI H,XIONG P,FAN H,et al.Dfanet:Deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9522-9531. [20] SONG Q,MEI K,HUANG R.AttaNet:Attention-augmentednetwork for fast and accurate scene parsing[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:2567-2575. [21] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [22] JOCHER G.YOLOv5 by Ultralytics(Version 7.0)[EB/OL].https://doi.org/10.5281/zenodo.3908559. [23] TAKIKAWA T,ACUNA D,JAMPANI V,et al.Gated-scnn:Gated shape cnns for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:5229-5238. [24] CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:3213-3223. [25] BROSTOW G J,FAUQUEUR J,CIPOLLA R.Semantic object classes in video:A high-definition ground truth database[J].Pattern Recognition Letters,2009,30(2):88-97. [26] ABU ALHAIJA H,MUSTIKOVELA S K,MESCHEDER L,et al.Augmented reality meets computer vision:Efficient data generation for urban driving scenes[J].International Journal of Computer Vision,2018,126:961-972. [27] RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115:211-252. [28] GENG H,JIANG J,SHEN J,et al.Cascading Alignment forUnsupervised Domain-Adaptive DETR with Improved DeNoi-sing Anchor Boxes[J].Sensors,2022,22(24):9629. [29] GU Y H,HAO J,CHEN B.Semi-supervised Semantic Segmentation for High-resolution Remote Sensing Images Based on DataFusion[J].Computer Science,2023,50(S1):22050001-6. [30] CHEN L,XU G,FU N N,et al.Research on 3D Point Cloud Semantic Segmentation Method Fused with Edge Detection[J].Journal of Chongqing Technology and Business University(Na-tural Science Edition),2022,39(5):1-9. [31] ORSIC M,KRESO I,BEVANDIC P,et al.In defense of pre-trained imagenet architectures for real-time semantic segmentation of road-driving images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12607-12616. [32] CHEN W,GONG X,LIU X,et al.Fasterseg:Searching for faster real-time semantic segmentation[J].arXiv:1912.10917,2019. [33] WANG Y,CHEN S,BIAN H,et al.Deep Multi-Resolution Net-work for Real-Time Semantic Segmentation in Street Scenes[C]//2023 International Joint Conference on Neural Networks(IJCNN).IEEE,2023:1-8. [34] KUMAAR S,LYU Y,NEX F,et al.Cabinet:Efficient context aggregation network for low-latency semantic segmentation[C]//2021 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2021:13517-13524. [35] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training re-gion-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:761-769. |
[1] | YAN Xin, HUANG Zhiqiu, SHI Fan, XU Heng. Study on Following Car Model with Different Driving Styles Based on Proximal PolicyOptimization Algorithm [J]. Computer Science, 2024, 51(9): 223-232. |
[2] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[3] | HU Mingyang, GUO Yan, JIN Yangshuang. PSwin:Edge Detection Algorithm Based on Swin Transformer [J]. Computer Science, 2023, 50(6): 194-199. |
[4] | BAI Xuefei, MA Yanan, WANG Wenjian. Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion [J]. Computer Science, 2023, 50(3): 199-207. |
[5] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[6] | ZHENG Shun-yuan, HU Liang-xiao, LYU Xiao-qian, SUN Xin, ZHANG Sheng-ping. Edge Guided Self-correction Skin Detection [J]. Computer Science, 2022, 49(11): 141-147. |
[7] | ZENG Wei-liang, CHEN Yi-hao, YAO Ruo-yu, LIAO Rui-xiang, SUN Wei-jun. Application of Spatial-Temporal Graph Attention Networks in Trajectory Prediction for Vehicles at Intersections [J]. Computer Science, 2021, 48(6A): 334-341. |
[8] | SONG Yu, SUN Wen-yun. Edge Detection in Images Corrupted with Noise Based on Improved Nonlinear Structure Tensor [J]. Computer Science, 2021, 48(6): 138-144. |
[9] | LI Ya-ze, LIU Hong-zhe. Object Detection Based on Neighbour Feature Fusion [J]. Computer Science, 2021, 48(12): 264-268. |
[10] | ZHU Rong, YE Kuan, YANG Bo, XIE Huan, ZHAO Lei. Feature Classification Method Based on Improved DeeplabV3+ [J]. Computer Science, 2021, 48(11A): 382-385. |
[11] | LIU Jun-qi, LI Zhi and ZHANG Xue-yang. Candidate Region Detection Method for Maritime Ship Based on Visual Saliency [J]. Computer Science, 2020, 47(6A): 237-241. |
[12] | ZHOU Yue-yong,CHENG Jiang-hua,LIU Tong,WANG Yang,CHEN Ming-hui. Review of Road Extraction for High-resolution SAR Images [J]. Computer Science, 2020, 47(1): 124-135. |
[13] | HUO Xing, FEI Zhi-wei, ZHAO Feng, SHAO Kun. Application of Deep Learning in Driver’s Safety Belt Detection [J]. Computer Science, 2019, 46(6A): 182-187. |
[14] | WANG Ya-ge, KANG Xiao-dong, GUO Jun, HONG Rui, LI Bo, ZHANG Xiu-fang. Image Compression Method Combining Canny Edge Detection and SPIHT [J]. Computer Science, 2019, 46(6A): 222-225. |
[15] | WANG Zhi-hui, LI Jia-tong, XIE Si-yan, ZHOU Jia, LI Hao-jie, FAN Xin. Two-stage Method for Video Caption Detection and Extraction [J]. Computer Science, 2018, 45(8): 50-53. |
|