Computer Science ›› 2021, Vol. 48 ›› Issue (12): 264-268.doi: 10.11896/jsjkx.201200196
• Computer Graphics & Multimedia • Previous Articles Next Articles
LI Ya-ze, LIU Hong-zhe
CLC Number:
[1]MOGELMOSE A,TRIVEDI M M,MOESLUND T B.Vision-based traffic sign detection and analysis for intelligent driver assistance systems:Perspectives and survey[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(4):1484-1497. [2]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [3]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.2015:91-99. [4]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768. [5]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. [6]JOHN M E.The PASCAL Visual Object Classes Challenge 2007(VOC2007) Development Kit[J].International Journal of Computer Vision,2006,111(1):98-136. [7]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision.2016:21-37. [8]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790. [9]PANG J,CHEN K,SHI J,et al.Libra r-cnn:Towards balanced learning for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:821-830. [10]HE K,GKIOXARI G,DOLLÁR P,et al.Mask r-cnn[C]//Pro- ceedings of the IEEE International Conference on Computer Vision.2017:2961-2969. [11]REDMON J,FARHADI A.Yolov3:An incremental improve- ment[J].arXiv:1804.02767,2018. [12]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [13]CAI Z,VASCONCELOS N.Cascade r-cnn:Delving into high quality object detection[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:6154-6162. [14]QIAO S,CHEN L C,YUILLE A.DetectoRS:Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution[J].arXiv:2006.02334,2020. [15]LIU Y,WANG Y,WANG S,et al.CBNet:A Novel Composite Backbone Network Architecture for Object Detection[C]//AAAI.2020:11653-11660. [16]SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training region-based object detectors with online hard example mining[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE Computer Society,2016:761-769. [17]CHEN K,WANG J,PANG J,et al.Mmdetection:Open mmlab detection toolbox and benchmark[J].arXiv:1906.07155,2019. [18]GAO S,CHENG M M,ZHAO K,et al.Res2Net:A New Multi-scale Backbone Architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662,1. [19]WANG T,YUAN L,ZHANG X,et al.Distilling object detectors with fine-grained feature imitation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:4933-4942. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | LIU Dong-mei, XU Yang, WU Ze-bin, LIU Qian, SONG Bin, WEI Zhi-hui. Incremental Object Detection Method Based on Border Distance Measurement [J]. Computer Science, 2022, 49(8): 136-142. |
[8] | WANG Can, LIU Yong-jian, XIE Qing, MA Yan-chun. Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization [J]. Computer Science, 2022, 49(8): 157-164. |
[9] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[10] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[11] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[12] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[13] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[14] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[15] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
|