Computer Science ›› 2025, Vol. 52 ›› Issue (2): 183-190.doi: 10.11896/jsjkx.240400131
• Computer Graphics & Multimedia • Previous Articles Next Articles
DU Qiangang1, PENG Bo2, CHI Mingmin1
CLC Number:
[1]CHEN H,SHI Z.A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection[J].Remote Sensing,2020,12(10):1662. [2]JI S,WEI S,LU M.Fully Convolutional Networks for Multi-source Building Extraction From an Open Aerial and Satellite Imagery Data Set[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(1):574-586. [3]LEBEDEV M A,VIZILTER Y V,VYGOLOV O V.et al.Change Detection in Remote Sensing Images Using Conditional Adversarial Networks[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-2:565-571. [4]ZHANG C,YUE P,TAPETE D,et al.A deeply supervisedimage fusion network for change detection in high resolution bi-temporal remote sensing images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,166:183-200. [5]DAUDT R C,LE SAUX B,BOULCH A.Fully ConvolutionalSiamese Networks for Change Detection[J].arXiv:1810.08462v1,2018. [6]CHEN C P,HSIEH J W,CHENP Y,et al.SARAS-Net:Scale and Relation Aware Siamese Network for Change Detection[J].Proceedings of the AAAI Conference on Artificial Intelligence,2023,37(12):14187-14195. [7]CHEN H,QI Z,SHI Z.Remote Sensing Image Change Detection With Transformers[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14. [8]DING X,GUO Y,DING G,et al.ACNet:Strengthening theKernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks[J].arXiv:1908.03930,2019. [9]FANG S,LI K,SHAO J,et al.SNUNet-CD:A Densely Connec-ted Siamese Network for Change Detection of VHR Images[J].IEEE Geoscience and Remote Sensing Letters,2022,19:1-5. [10]CODEGONI A,LOMBARDI G,FERRARI A,TINYCD:A(Not So) Deep Learning Model For Change Detection[J].arXiv:2207.13159,2022. [11]MA X W,YANG J W,HONG T F,et al.STNet:Spatial andTemporal feature fusion network for change detection in remote sensing images[J].arXiv:2304.11422,2023. [12]FANG Z L,LI K Y.Changer Feature Interaction is What You Need for Change Detection[J].arXiv.2209.08290,2022. [13]BANDARA W G C,PATEL V M.A Transformer-Based Sia-mese Network for Change Detection[C]//2022 IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2022).2022:207-210. [14]LEI T,WANG J,NING H,et al.Difference Enhancement andSpatial-Spectral Nonlocal Network for Change Detection in VHR Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-13. [15]LI Z,TANG C,WANGL,et al.Remote Sensing Change Detection via Temporal Feature Interaction and Guided Refinement[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-11. [16]LI Z,YAN C,SUN,Y,et al.A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-18. [17]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:936-944. [18]LV Z,WANG F,CUI G,et al.Spatial-Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images[J].IEEE Transactionson Geoscience and Remote Sensing,2022,60:1-12. [19]LYU H,LU H.Learning a transferable change detection methodby Recurrent Neural Network[C]//2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).2016:5157-5160. [20]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[J].arXiv:1512.03385,2015. [21]RUßWURM M,KORNER M.Temporal Vegetation ModellingUsing Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).2017:1496-1504. [22]VARGHESE A,GUBBI J,RAMASWAMY A,et al.Change-Net:A Deep Learning Architecture for Visual Change Detection[C]//Computer Vision-ECCV 2018.2019:129-145. [23]BAI B,FU W,LU T,et al.Edge-Guided Recurrent ConvolutionalNeural Network for Multitemporal Remote Sensing Image Building Change Detection[J].IEEE Transactions on Geos-cience and Remote Sensing,2022.60:1-13. [24]YANG B,QIN L,LIU J,et al.IRCNN:An Irregular-Time-Distanced Recurrent Convolutional Neural Network for Change Detection in Satellite Time Series[J].IEEE Geoscience and Remote Sensing Letters,2022,19:1-5. [25]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [26]WANG S P,LI Y X,XIE M,et al.Align,Perturb and Decouple:Toward Better Leverage of Difference Information for RSI Change Detection[J].arXiv:2305.18714,2023. |
[1] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[2] | DU Yuanhua, CHEN Pan, ZHOU Nan, SHI Kaibo, CHEN Eryang, ZHANG Yuanpeng. Correntropy Based Multi-view Low-rank Matrix Factorization and Constraint Graph Learning for Multi-view Data Clustering [J]. Computer Science, 2025, 52(6A): 240900131-10. |
[3] | BAO Shenghong, YAO Youjian, LI Xiaoya, CHEN Wen. Integrated PU Learning Method PUEVD and Its Application in Software Source CodeVulnerability Detection [J]. Computer Science, 2025, 52(6A): 241100144-9. |
[4] | WANG Yicheng, NING Tai, LIU Xinyu, LUO Ye. Position-aware Based Multi-modality Lung Cancer Survival Prediction Method [J]. Computer Science, 2025, 52(6A): 240500089-8. |
[5] | CHEN Qirui, WANG Baohui, DAI Chencheng. Research on Electrocardiogram Classification and Recognition Algorithm Based on Transfer Learning [J]. Computer Science, 2025, 52(6A): 240900073-8. |
[6] | WANG Xiao, LI Guanxiong, LI Na, YUAN Dongfeng. Semi-supervised Learning Flow Field Prediction Method Based on Gaussian Mixture Discrimination [J]. Computer Science, 2025, 52(6): 88-95. |
[7] | ZHANG Jiaxiang, PAN Min, ZHANG Rui. Study on EEG Emotion Recognition Method Based on Self-supervised Graph Network [J]. Computer Science, 2025, 52(5): 122-127. |
[8] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
[9] | WU You, WANG Jing, LI Peipei, HU Xuegang. Semi-supervised Partial Multi-label Feature Selection [J]. Computer Science, 2025, 52(4): 161-168. |
[10] | SHEN Yaxin, GAO Lijian , MAO Qirong. Semi-supervised Sound Event Detection Based on Meta Learning [J]. Computer Science, 2025, 52(3): 222-230. |
[11] | HE Liren, PENG Bo, CHI Mingmin. Unsupervised Multi-class Anomaly Detection Based on Prototype Reverse Distillation [J]. Computer Science, 2025, 52(2): 202-211. |
[12] | DING Xinyu, KONG Bing, CHEN Hongmei, BAO Chongming, ZHOU Lihua. Path-masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering [J]. Computer Science, 2025, 52(1): 160-169. |
[13] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
[14] | WEI Niannian, HAN Shuguang. New Solution for Traveling Salesman Problem Based on Graph Convolution and AttentionNeural Network [J]. Computer Science, 2024, 51(6A): 230700222-8. |
[15] | LI Dongyang, NIE Rencan, PAN Linna, LI He. UMGN:An Infrared and Visible Image Fusion Network Based on Unsupervised Significance MaskGuidance [J]. Computer Science, 2024, 51(6A): 230600170-5. |
|