Computer Science ›› 2025, Vol. 52 ›› Issue (2): 202-211.doi: 10.11896/jsjkx.240400048
• Computer Graphics & Multimedia • Previous Articles Next Articles
HE Liren1, PENG Bo2, CHI Mingmin1
CLC Number:
[1]BERGMANN P,FAUSER M,SATTLEGGER D,et al.Mvte-cad-a comprehensive real-world dataset for unsupervised ano-maly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9592-9600. [2]ZOU Y,JEONG J,PEMULA L,et al.Spot-the-difference self-supervised pre-training for anomaly detection and segmentation[C]//European Conference on Computer Vision.Springer,2022:392-408. [3]FERNANDO T,GAMMULLE H,DENMAN S,et al.Deeplearning for medical anomaly detection-a survey[J].ACM Computing Surveys(CSUR),2021,54(7):1-37. [4]DEFARD T,SETKOV A,LOESCH A,et al.Padim:a patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition.Springer,2021:475-489. [5]GUDOVSKIY D,ISHIZAKA S,KOZUKA K.Cflow-ad:Real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:98-107. [6]LEI J,HU X,WANG Y,et al.Pyramidflow:High-resolution defect contrastive localization using pyramid normalizing flow[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:14143-14152. [7]RIPPEL O,MERTENS P,MERHOF D.Modeling the distribution of normal data in pre-trained deep features for anomaly detection[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:6726-6733. [8]ROTH K,PEMULA L,ZEPEDA J,et al.Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14318-14328. [9]YAN X,ZHANG H,XU X,et al.Learning semantic contextfrom normal samples for unsupervised anomaly detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence:Vol.35.2021:3110-3118. [10]YAO X,LI R,QIAN Z,et al.Focus the discrepancy:Intra-and inter-correlation learning for image anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:6803-6813. [11]YOU Z,YANG K,LUO W,et al.Adtr:Anomaly detectiontransformer with feature reconstruction[C]//International Conference on Neural Information Processing.Springer,2022:298-310. [12]ZAVRTANIK V,KRISTAN M,SKOCˇAJ D.Draem-a discriminatively trained reconstruction embedding for surface anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:8330-8339. [13]ZHANG H,WANG Z,WU Z,et al.Diffusionad:Denoising diffusion for anomaly detection[J].arXiv:2303.08730,2023. [14]BERGMANN P,FAUSER M,SATTLEGGER D,et al.Unin-formed students:Student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4183-4192. [15]DENG H,LI X.Anomaly detection via reverse distillation from one-class embedding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:9737-9746. [16]SALEHI M,SADJADI N,BASELIZADEH S,et al.Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14902-14912. [17]TIEN T D,NGUYEN A T,TRAN N H,et al.Revisiting reverse distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:24511-24520. [18]YOU Z,CUI L,SHEN Y,et al.A unified model for multi-class anomaly detection[J].Advances in Neural Information Proces-sing Systems,2022,35:4571-4584. [19]ZHAO Y.Omnial:A unified cnn framework for unsupervisedanomaly localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:3924-3933. [20]MASOUDNIA S,EBRAHIMPOUR R.Mixture of experts:a li-terature survey[J].Artificial Intelligence Review,2014,42:275-293. [21]RUDOLPH M,WANDT B,ROSENHAHN B.Same same butdiffernet:Semi-supervised defect detection with normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:1907-1916. [22]RUDOLPH M,WEHRBEIN T,ROSENHAHN B,et al.Fully convolutional cross-scale-flows for image-based defect detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:1088-1097. [23]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [24]HO J,JAIN A,ABBEEL P.Denoising diffusion probabilisticmodels[J].Advances in Neural Information Processing Systems,2020,33:6840-6851. [25]GU Z,LIU L,CHEN X,et al.Remembering normality:Memory-guided knowledge distillation for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:16401-16409. [26]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [27]ZAGORUYKO S,KOMODAKIS N.Wide residual networks[J].arXiv:1605.07146,2016. [28]TAN M,LE Q.Efficientnet:Rethinking model scaling for con-volutional neural networks[C]//International Conference on Machine Learning.PMLR,2019:6105-6114. [29]CAI Z,VASCONCELOS N.Cascade r-cnn:Delving into highquality object detection[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:6154-6162. [30]LIU Z,ZHOU Y,XU Y,et al.Simplenet:A simple network for image anomaly detection and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20402-20411. [31]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. |
[1] | YIN Wencui, XIE Ping, YE Chengxu, HAN Jiaxin, XIA Xing. Anomaly Detection of Multi-variable Time Series Data Based on Variational Graph Auto-encoders [J]. Computer Science, 2025, 52(6A): 240700124-8. |
[2] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[3] | LIAO Sirui, HUANG Feihu, ZHAN Pengxiang, PENG Jian, ZHANG Linghao. DCDAD:Differentiated Context Dependency for Time Series Anomaly Detection Method [J]. Computer Science, 2025, 52(6): 106-117. |
[4] | SI Yuehang, CHENG Qing, HUANG Jincai. Multi-assistant Dynamic Setting Method for Knowledge Distillation [J]. Computer Science, 2025, 52(5): 241-247. |
[5] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
[6] | YAN Tingju, CAO Yan, WANG Yijing. Low-power Bluetooth Spoofing Attack Detection Technology Based on RFFAD_DeepSVDD [J]. Computer Science, 2025, 52(2): 380-387. |
[7] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[8] | DING Xinyu, KONG Bing, CHEN Hongmei, BAO Chongming, ZHOU Lihua. Path-masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering [J]. Computer Science, 2025, 52(1): 160-169. |
[9] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[10] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[11] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[12] | ZENG Zihui, LI Chaoyang, LIAO Qing. Multivariate Time Series Anomaly Detection Algorithm in Missing Value Scenario [J]. Computer Science, 2024, 51(7): 108-115. |
[13] | LI Dongyang, NIE Rencan, PAN Linna, LI He. UMGN:An Infrared and Visible Image Fusion Network Based on Unsupervised Significance MaskGuidance [J]. Computer Science, 2024, 51(6A): 230600170-5. |
[14] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[15] | LOU Ren, HE Renqiang, ZHAO Sanyuan, HAO Xin, ZHOU Yueqi, WANG Xinyuan, LI Fangfang. Single Stage Unsupervised Visible-infrared Person Re-identification [J]. Computer Science, 2024, 51(6A): 230600138-7. |
|