Computer Science ›› 2025, Vol. 52 ›› Issue (2): 261-267.doi: 10.11896/jsjkx.240200072
• Computer Network • Previous Articles Next Articles
SHANG Qiuyan1, LI Yicong2,3, WEN Ruilin1,2, MA Yinping1,2, OUYANG Rongbin1, FAN Chun1,2
CLC Number:
[1]LU P J,XIONG Z Y,LAI M C.Analysis of the current status of high-performance computing technology and standards[J].Computer Science,2023,50(11):1-7. [2]ZRIGUI S,DE CAMARGO R Y,LEGRAND A,et al.Improving the performance of batch schedulers using online job run-time classification[J].Journal of Parallel and Distributed Computing,2022,164:83-95. [3]MENEAR K,NAG A,PERR-SAUER J,et al.Mastering HPC Runtime Prediction:From Observing Patterns to a Methodological Approach[M]//Practice and Experience in Advanced Research Computing.2023:75-85. [4]MARO R,BAI Y,BAHAR R I.Dynamically reconfiguring processor resources to reduce power consumption in high-perfor-mance processors[C]//Power-Aware Computer Systems:First International Workshop,PACS 2000 Cambridge,MA,USA,November 12,2000 Revised Papers 1.Springer Berlin Heidelberg,2001:97-111. [5]FAN Y,LAN Z,CHILDERS T,et al.Deep reinforcement agent for scheduling in HPC[C]//2021 IEEE International Parallel and Distributed Processing Symposium(IPDPS).IEEE,2021:807-816. [6]ZHANG D,DAI D,HE Y,et al.RLScheduler:an automatedHPC batch job scheduler using reinforcement learning[C]//SC20:International Conference for High Performance Computing,Networking,Storage and Analysis.IEEE,2020:1-15. [7]FAN Y,LAN Z.DRAS-CQSim:A reinforcement learning based framework for HPC cluster scheduling[J].Software Impacts,2021,8:100077. [8]TSAFRIR D,ETSION Y,FEITELSON D G.Backfilling usingsystem-generated predictions rather than user runtime estimates[J].IEEE Transactions on Parallel and Distributed Systems,2007,18(6):789-803. [9]PHINJAROENPHAN P,BEVINAKOPPA S,ZEEPHONG-SEKUL P.A method for estimating the execution time of a pa-rallel task on a grid node[C]//Advances in Grid Computing-EGC 2005:European Grid Conference,Amsterdam,The Netherlands,February 14-16,2005,Revised Selected Papers.Springer Berlin Heidelberg,2005:226-236. [10]QUINLAN J R.Induction of decision trees[J].Machine Lear-ning,1986,1:81-106. [11]SMOLA A J,SCHÖLKOPF B.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222. [12]ROSENBLATT F.The perceptron:a probabilistic model for information storage and organization in the brain[J].Psychological Review,1958,65(6):386. [13]YU X X,WEI J W,ZHANG Z B,et al.Research on machine learning to predict job running time of school-level computing teaching platform[J].Soft Ware Guide,2023,22(11):104-109. [14]CHEN X,LU C D,PATTABIRAMAN K.Predicting job completion times using system logs in supercomputing clusters[C]//2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop(DSN-W).IEEE,2013:1-8. [15]BAUM L E,PETRIE T,SOULES G,et al.A maximizationtechnique occurring in the statistical analysis of probabilistic functions of Markov chains[J].The Annals of Mathematical Statistics,1970,41(1):164-171. [16]WU G P,SHEN Y,ZHANG W S,et al.Job duration prediction for backfill optimization[J].Journal of Chinese Computer System,2019,40(1):6-12. [17]ZHOU L F,YANG W Y,HAN Y G,et al.Job name hierarchical clustering algorithm predicts job running time[J].Journal of National University of Defense Technology/Guofang Keji Daxue Xuebao,2022,44(5):13-23. [18]ZHOU L,ZHANG X,YANG W,et al.Prep:Predicting jobruntime with job running path on supercomputers[C]//Proceedings of the 50th International Conference on Parallel Processing.2021:1-10. [19]CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM sigkdd International Conference on Knowledge Discovery and Data Mining.2016:785-794. [20]KE G,MENG Q,FINLEY T,et al.Lightgbm:A highly efficient gradient boosting decision tree[C]//Neural Information Processing Systems.Curran Associates Inc,2017. [21]FRIEDMAN J H.Greedy function approximation:a gradientboosting machine[J].Annals of Statistics,2001:1189-1232. [22]HU Q,SUN P,YAN S,et al.Characterization and prediction of deep learning workloads in large-scale gpu datacenters[C]//Proceedings of the International Conference for High Perfor-mance Computing,Networking,Storage and Analysis.2021:1-15. [23]BREIMAN L.Random forests[J].Machine Learning,2001,45:5-32. [24]BOX G E P,JENKINS G M,REINSEL G C,et al.Time series analysis:forecasting and control[M].John Wiley & Sons,2015. |
[1] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[2] | GAO Yiqin, LUO Zhiyu, WANG Yichao, LIN Xinhua. Performance Evaluation and Optimization of Operating System for Domestic Supercomputer [J]. Computer Science, 2025, 52(5): 11-24. |
[3] | WU Xingli, ZHANG Haoyue, LIAO Huchang. Review of Doctor Recommendation Methods and Applications for Consultation Platforms [J]. Computer Science, 2025, 52(5): 109-121. |
[4] | JIAO Jian, CHEN Ruixiang, HE Qiang, QU Kaiyang, ZHANG Ziyi. Study on Smart Contract Vulnerability Repair Based on T5 Model [J]. Computer Science, 2025, 52(4): 362-368. |
[5] | HAN Lin, WANG Yifan, LI Jianan, GAO Wei. Automatic Scheduling Search Optimization Method Based on TVM [J]. Computer Science, 2025, 52(3): 268-276. |
[6] | XIONG Qibing, MIAO Qiguang, YANG Tian, YUAN Benzheng, FEI Yangyang. Malicious Code Detection Method Based on Hybrid Quantum Convolutional Neural Network [J]. Computer Science, 2025, 52(3): 385-390. |
[7] | ZUO Xuhong, WANG Yongquan, QIU Geping. Study on Integrated Model of Securities Illegal Margin Trading Accounts Identification Based on Trading Behavior Characteristics [J]. Computer Science, 2025, 52(2): 125-133. |
[8] | LI Haixia, SONG Danlei, KONG Jianing, SONG Yafei, CHANG Haiyan. Evaluation of Hyperparameter Optimization Techniques for Traditional Machine Learning Models [J]. Computer Science, 2024, 51(8): 242-255. |
[9] | ZHANG Daili, WANG Tinghua, ZHU Xinglin. Overview of Sample Reduction Algorithms for Support Vector Machine [J]. Computer Science, 2024, 51(7): 59-70. |
[10] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
[11] | CHEN Xiangxiao, CUI Xin, DU Qin, TANG Haoyao. Study on Optimization of Abnormal Traffic Detection Model Based on Machine Learning [J]. Computer Science, 2024, 51(6A): 230700051-5. |
[12] | ZHOU Tianyang, YANG Lei. Study on Client Selection Strategy and Dataset Partition in Federated Learning Basedon Edge TB [J]. Computer Science, 2024, 51(6A): 230800046-6. |
[13] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
[14] | WANG Zhaodan, ZOU Weiqin, LIU Wenjie. Buggy File Identification Based on Recommendation Lists [J]. Computer Science, 2024, 51(6A): 230600088-8. |
[15] | TIAN Shuaihua, LI Zheng, WU Yonghao, LIU Yong. Identifying Coincidental Correct Test Cases Based on Machine Learning [J]. Computer Science, 2024, 51(6): 68-77. |
|