Computer Science ›› 2025, Vol. 52 ›› Issue (6): 96-105.doi: 10.11896/jsjkx.240500043
• Database & Big Data & Data Science • Previous Articles Next Articles
CHEN Jiajun1, LIU Bo1,3, LIN Weiwei2, ZHENG Jianwen3, XIE Jiachen3
CLC Number:
[1]LI Z X,LIU H Y.A multivariate time series forecasting method incorporatingglobaland serial features[J].Journal of Computing,2023,46(1):70-84. [2]BARRA S,CARTA S M,CORRIGA A,et al.Deep learning and time series-to-image encoding for financial forecasting[J].IEEE/CAA Journal ofAutomatica Sinica,2020,7(3):683-692. [3]MA C,DAI G,ZHOU J.Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(6):5615-5624. [4]SHARMA R R,KUMAR M,MAHESHWARI S,et al.EVDHM-ARIMA-based time series forecasting model and its application for COVID-19 cases[J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-10. [5]AMJADY N.Short-term hourly load forecasting using time-series modeling with peak load estimation capability[J].IEEE Transactions on Power Systems,2001,16(3):498-505. [6]BOX G E P,JENKINS G M,REINSEL G C,et al.Time series analysis:forecasting and control[M].John Wiley & Sons,2015. [7]BOX G E P,PIERCE D A.Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[J].Journal of the American statistical Association,1970,65(332):1509-1526. [8]XIE Y,JIN M,ZOU Z,et al.Real-time prediction of docker container resource load based on a hybrid model of ARIMA and triple exponential smoothing[J].IEEE Transactions on Cloud Computing,2020,10(2):1386-1401. [9]LAI G,CHANG W C,YANG Y,et al.Modeling long-and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:95-104. [10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [11]GALASSI A,LIPPI M,TORRONI P.Attention in natural language processing[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(10):4291-4308. [12]ZHANG T,GONG X,CHEN C L P.BMT-Net:Broad multitask transformer network for sentiment analysis[J].IEEE Transactions on Cybernetics,2021,52(7):6232-6243. [13]HU Y,JIN X,ZHANG Y,et al.Rams-trans:Recurrent attention multi-scale transformer for fine-grained image recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:4239-4248. [14]CHEN H,WANG Y,GUO T,et al.Pre-trained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:12299-12310. [15]MILLER J A,ALDOSARI M,SAEED F,et al.A survey of deep learning and foundation models for time series forecasting[J].arXiv:2401.13912,2024. [16]LIM B,ZOHREN S.Time-series forecasting with deep learning:a survey[J].Philosophical Transactions of the Royal Society A,2021,379(2194):20200209. [17]HAN Z,ZHAO J,LEUNG H,et al.A review of deep learning models for time series prediction[J].IEEE Sensors Journal,2019,21(6):7833-7848. [18]YIN J,RAO W,YUANM,et al.Experimental study of multivariate time series forecasting models[C]//Proceedings of the 28th ACM International Conference on Information and Know-ledge Management.2019:2833-2839. [19]AK R,FINK O,ZIO E.Two machine learning approaches forshort-term wind speed time-series prediction[J].IEEE Transactions on Neural Networks and Learning Systems,2015,27(8):1734-1747. [20]LINDEMANN B,MÜLLER T,VIETZ H,et al.A survey on long short-term memory networks for time series prediction[J].Procedia Cirp,2021,99:650-655. [21]CHENG C,SA-NGASOONGSONG A,BEYCA O,et al.Timeseries forecasting for nonlinear and non-stationary processes:a review and comparative study[J].Iie Transactions,2015,47(10):1053-1071. [22]ARIK S O,YODER N C,PFISTER T.Self-adaptive forecasting for improved deep learning on non-stationary time-series[J].arXiv:2202.02403,2022. [23]WANG Z,BOVIK A C.Mean squared error:Love it or leave it? A new look at signal fidelity measures[J].IEEE Signal Proces-sing Magazine,2009,26(1):98-117. [24]WILLMOTT C J,MATSUURA K.Advantages of the mean absolute error(MAE) over the root mean square error(RMSE) in assessing average model performance[J].Climate Research,2005,30(1):79-82. [25]CHAI T,DRAXLER R R.Root mean square error(RMSE) ormean absolute error(MAE)?-Arguments against avoiding RMSE in the literature[J].Geoscientific Model Development,2014,7(3):1247-1250. [26]CORTES C,VAPNIK V.Support-vector networks[J].Machine learning,1995,20:273-297. [27]BREIMAN L.Random forests[J].Machine Learning,2001,45:5-32. [28]LIANG H T,LIU S,DU J W,et al.A review of deep learning applications in time series forecasting[J].Journal of Frontiers of Computer Science & Technology,2023,17(6):1285. [29]MEDSKER L R,JAIN L C.Recurrent neural networks:design and applications[M].CRC press,1999. [30]LIN S,LIN W,WU W,et al.Segrnn:Segment recurrent neural network for long-term time series forecasting[J].arXiv:2308.11200,2023. [31]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [32]LIVIERIS I E,PINTELAS E,PINTELASP.A CNN-LSTMmodel for gold price time-series forecasting[J].Neural Computing and Applications,2020,32:17351-17360. [33]GRAVES A.Long Short-term Memory[J].Supervised Sequence Labelling with Recurrent Neural Networks,2012,385:37-45. [34]WEN Q,ZHOU T,ZHANG C,et al.Transformers in time series:A survey[J].arXiv:2202.07125,2022. [35]TAO C,GAO S,SHANG M,et al.Get The Point of My Utte-rance! Learning Towards Effective Responses with Multi-Head Attention Mechanism[C]//IJCAI.2018:4418-4424. [36]BENIDIS K,RANGAPURAM SS,FLUNKERT V,et al.Deep learning for time series forecasting:Tutorial and literature survey[J].ACM Computing Surveys,2022,55(6):1-36. [37]WU S,XIAO X,DING Q,et al.Adversarial sparse transformer for time series forecasting[J].Advances in Neural Information Processing Systems,2020,33:17105-17115. [38]LIM B,ARIK S Ö,LOEFF N,et al.Temporal fusion transformers for interpretable multi-horizon time series forecasting[J].International Journal of Forecasting,2021,37(4):1748-1764. [39]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11106-11115. [40]WU H,XU J,WANG J,et al.Autoformer:Decomposition transformers with auto-correlation for long-term series forecasting[J].Advances in Neural Information Processing Systems,2021,34:22419-22430. [41]ZENG A,CHEN M,ZHANG L,et al.Are transformers effective for time series forecasting?[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:11121-11128. [42]NIE Y,NGUYEN N H,SINTHONG P,et al.A time series is worth 64 words:Long-term forecasting with transformers[J].arXiv:2211.14730,2022. [43]QI X,HOU K,LIU T,et al.From known to unknown:Know-ledge-guided transformer for time-series sales forecasting in ali-baba[J].arXiv:2109.08381,2021. [44]ZHOU T,MA Z,WEN Q,et al.Fedformer:Frequency enhanced decomposed transformer for long-term series forecasting[C]//International Conference on Machine Learning.PMLR,2022:27268-27286. [45]ZHANG Y,YAN J.Crossformer:Transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//The Eleventh International Conference on Learning Representations.2022. [46]LIU S,YU H,LIAO C,et al.Pyraformer:Low-complexity pyramidal attention for long-range time series modeling and forecasting[C]//International Conference on Learning Representations.2021. [47]YEH C,CHEN Y,WU A,et al.Attentionviz:A global view of transformer attention[J].IEEE Transactions on Visualization and Computer Graphics,2024,30(1):262-272. [48]BRAŞOVEANU A M P,ANDONIE R.Visualizing transformers fornlp:a brief survey[C]//2020 24th International Conference Information Visualisation(IV).IEEE,2020:270-279. [49]CORNIA M,BARALDI L,CUCCHIARA R.Explaining transformer-based image captioning models:An empirical analysis[J].AI Communications,2022,35(2):111-129. [50]CHEN H,JIANG D,SAHLI H.Transformer encoder withmulti-modal multi-head attention for continuous affect recognition[J].IEEE Transactions on Multimedia,2020,23:4171-4183. [51]LIU Z,RODRIGUEZ-OPAZO C,TENEY D,et al.Image re-trieval on real-life images with pre-trained vision-and-language models[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:2125-2134. [52]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[J/OL].https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. [53]JIN M,WANG S,MA L,et al.Time-llm:Time series forecasting by reprogramming large language models[J].arXiv:2310.01728,2023. [54]ZHOU T,NIU P,SUN L,et al.One fits all:Power general time series analysis by pretrained lm[J].arXiv:2302.11939,2023. [55]HE Y,DONG X,KANG G,et al.Asymptotic soft filter pruning for deep convolutional neural networks[J].IEEE Transactions on Cybernetics,2019,50(8):3594-3604. [56]HE H,CAI J,LIU J,et al.Pruning self-attentions into convolutional layers in single path[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(5):13. [57]DING Z,FU Y.Dual low-rank decompositions for robust cross-view learning[J].IEEE Transactions on Image Processing,2018,28(1):194-204. [58]LIN S,LIN W,WUW,et al.SparseTSF:Modeling Long-term Time Series Forecasting with 1k Parameters[J].arXiv:2405.00946,2024. |
[1] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[2] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[3] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[4] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[5] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[6] | ZOU Ling, ZHU Lei, DENG Yangjun, ZHANG Hongyan. Source Recording Device Verification Forensics of Digital Speech Based on End-to-End DeepLearning [J]. Computer Science, 2025, 52(6A): 240800028-7. |
[7] | LIU Runjun, XIAO Fengjun, HU Weitong, WANG Xu. Reversible Data Hiding in Fully Encrypted Images Based on Pixel Interval Partitioning andPrediction Recovery [J]. Computer Science, 2025, 52(6A): 240900030-8. |
[8] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[9] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
[10] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[11] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[12] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[13] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
[14] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
[15] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
|