计算机科学 ›› 2018, Vol. 45 ›› Issue (8): 146-150.doi: 10.11896/j.issn.1002-137X.2018.08.026

• 信息安全 • 上一篇    下一篇

基于信任网络的协同过滤推荐方法

张洪波, 王佳蕾, 张丽娟, 刘志宏   

  1. 西安电子科技大学网络与信息安全学院 西安710071
  • 收稿日期:2017-01-06 出版日期:2018-08-29 发布日期:2018-08-29
  • 作者简介:张洪波(1991-),男,硕士生,主要研究方向为信任管理、推荐系统、物理层安全,E-mail:284477545@qq.com; 王佳蕾(1992-),女,硕士生,主要研究方向为信任管理、推荐系统、物理层安全,E-mail:1192363902@qq.com; 张丽娟(1991-),女,硕士生,主要研究方向为信任管理、推荐系统、物理层安全,E-mail:838894914@qq.com; 刘志宏(1968-),男,博士,副教授,主要研究方向为密码学、信息安全、网络编码、复杂网络、传感器网络等。
  • 基金资助:
    本文受111基地(B16037),国家自然科学基金(U1405255)资助。

Trust Network Based Collaborative Filtering Recommendation Algorithm

ZHANG Hong-bo, WANG Jia-lei, ZHANG Li-juan, LIU Zhi-hong   

  1. School of Cyber Engineering,Xidian University,Xi’an 710071,China
  • Received:2017-01-06 Online:2018-08-29 Published:2018-08-29

摘要: 经典的协同过滤推荐系统存在数据稀疏和冷启动问题。利用信任网络能够有效地解决此问题,但性能有待提高。根据“如果a信任b,则a与b相似度高的概率较大”这一普适规律,提出一种基于信任网络的协同过滤推荐算法。该算法采用惩罚、奖励机制,进一步提高了推荐系统的性能。算法将覆盖率和准确率作为衡量标准,与经典协同过滤算法和已有信任推荐算法进行实验对比,结果表明所提推荐方法的性能更好。

关键词: 推荐系统, 信任网络, 协同过滤, 冷启动

Abstract: The problems of data sparsity and cold start cannot be solved by the classical collaborative filtering recommendation schemes.Although these problems can be solved effectively by exploiting the trust networks of users,the performance of these schemes need to be improved.Based on the ubiquitous phenomenon of“if a trusts b,then the similarity between a and b is relatively high”,this paper proposed a collaborative filtering recommendation algorithm,which exploits a penalty and reward mechanism to further promote its performance.Then it was compared with the classical collaborative filtering algorithms and the existing trust recommendation algorithms in terms of the coverage and accuracy.The results show that the performance of the proposed algorithm is improved.

Key words: Recommendation system, Trust network, Collaborative filtering, Cold start

中图分类号: 

  • TP393
ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[2]Collaborative filtering-wikipedia[EB/OL].http://en.Wikipedia.org/wiki/Collaborative_filtering.
[3]GOLBECK J.Generating predictive movie recommendationsfrom trust in social networks[C]∥International Conference on Trust Management.Springer Berlin Heidelberg,2006:93-104.
[4]PALAU J,MONTANER M,LÓPEZ B,et al.Collaborationanalysis in recommender systems using social networks[C]∥International Workshop on Cooperative Information Agents.Springer Berlin Heidelberg,2004:137-151.
[5]YUAN W W,GUAN D H,LEE Y K,et al.Improved trusta-ware recommender system using small-worldness of trust networks.Knowledge-Based Systems,2010,23(3):232-238.
[6]TONG X R,ZHANG W,LONG Y.Transitivity of Agent Subjective Trust.Journal of Software,2012,23(11):2862-2870.(in Chinese)童向荣,张伟,龙宇.Agent主观信任的传递性.软件学报,2012,23(11):2862-2870.
[7]HWANG C S,CHEN Y P.Using trustin collaborative filtering recommendation[C]∥International Conference on Industrial,Engineering and Other Applications of Applied Intelligent Systems.Springer Berlin Heidelberg,2007:1052-1060.
[8]AVESANI P,MASSA P,TIELLA R.A trust-enhanced recommender system application:Moleskiing[C]∥Proceedings of the 2005 ACM Symposium on Applied Computing.ACM,2005:1589-1593.
[9]GUO G B,ZHANG J,THALMANN D.Merging trust in colla-borative filtering to alleviate data sparsity and cold start.Knowledge-Based Systems,2014,57:57-68.
[10]MORADI P,AHMADIAN S.A reliability-based recommendation method to improve trust-aware recommender systems.Expert Systems with Applications,2015,42(21):7386-7398.
[11]JAMALI M,ESTER M.TrustWalker:a random walk model for combining trust-based and item-based recommendation[C]∥15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2009:397-406.
[12]TONG Z,MCAULEY J,KING I.Leveraging social connections to improve personalized ranking for collaborative filtering[C]∥23rd ACM International Conference on Conference on Information and Knowledge Management.ACM,2014:261-270.
[13]AZADJALAL M M,MORADI P,ABDOLLAHPOURI A.Application of game theory techniques for improving trust based recommender systems in social networks[C]∥2014 4th International Conference on Computer and Knowledge Engineering(ICCKE).IEEE,2014:261-266.
[14]FENG J Y.Research on Trust Management Technologies inOpen Peer-to-Peer Environment.Xi’an:Xidian University,2011.(in Chinese)冯景瑜.开放式P2P网络环境下的信任管理技术研究.西安:西安电子科技大学,2011.
[15]ZHANG M W,YANG B,YU Y.DS theory based Distributed trust model.Journal of Wuhan University,2009,55(1):41-44.(in Chinese)张明武,杨波,禹勇.基于 DS 理论的分布式信任模型.武汉大学学报,2009,55(1):41-44.
[16]HU X P,YIN J.Research on Trust Transfer Model .Journal of Southeast University(Philosophy and Social Science),2013(4):46-51.(in Chinese)胡祥培,尹进.信任传递模型研究综述.东南大学学报(哲学社会科学版),2013(4):46-51.
[17] http://www.trustlet.org/wiki/Epinions_datasets.
[1] 王涵, 夏鸿斌. LDA模型和列表排序混合的协同过滤推荐算法[J]. 计算机科学, 2019, 46(9): 216-222.
[2] 邓存彬, 虞慧群, 范贵生. 融合动态协同过滤和深度学习的推荐算法[J]. 计算机科学, 2019, 46(8): 28-34.
[3] 张艳红, 张春光, 周湘贞, 王怡鸥. 项目多属性模糊联合的多样性视频推荐算法[J]. 计算机科学, 2019, 46(8): 78-83.
[4] 郭旭, 朱敬华. 基于用户向量化表示和注意力机制的深度神经网络推荐模型[J]. 计算机科学, 2019, 46(8): 111-115.
[5] 康林瑶, 唐兵, 夏艳敏, 张黎. 基于GPU加速和非负矩阵分解的并行协同过滤推荐算法[J]. 计算机科学, 2019, 46(8): 106-110.
[6] 石晓玲, 陈芷, 杨立功, 沈伟. 基于自适应样本权重的矩阵分解推荐算法[J]. 计算机科学, 2019, 46(6A): 488-492.
[7] 王旭, 庞巍, 王喆. 异构信息网络中基于元结构的协同过滤算法[J]. 计算机科学, 2019, 46(6A): 397-401.
[8] 刘晴晴, 罗永龙, 汪逸飞, 郑孝遥, 陈文. 基于SVD填充的混合推荐算法[J]. 计算机科学, 2019, 46(6A): 468-472.
[9] 陈俊航, 徐小平, 杨恒泓. 基于Seq2seq模型的推荐应用研究[J]. 计算机科学, 2019, 46(6A): 493-496.
[10] 何瑾琳, 刘学军, 徐新艳, 毛宇佳. 融合node2vec和深度神经网络的隐式反馈推荐模型[J]. 计算机科学, 2019, 46(6): 41-48.
[11] 卢竹兵, 李玉州. 基于网络评论情感信任分析的推荐策略[J]. 计算机科学, 2019, 46(6): 75-79.
[12] 苏畅, 武鹏飞, 谢显中, 李宁. 基于用户兴趣和地理因素的兴趣点推荐方法[J]. 计算机科学, 2019, 46(4): 228-234.
[13] 王永, 王永东, 邓江洲, 张璞. 融合Jensen-Shannon散度的推荐算法[J]. 计算机科学, 2019, 46(2): 210-214.
[14] 张琦, 柳玲, 文俊浩. 一种基于领域信任及不信任的奇异值分解推荐算法[J]. 计算机科学, 2019, 46(10): 27-31.
[15] 曾安, 聂文俊. 基于深度双向LSTM的股票推荐系统[J]. 计算机科学, 2019, 46(10): 84-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[3] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[4] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[5] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[6] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[7] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[8] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[9] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[10] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .