计算机科学 ›› 2020, Vol. 47 ›› Issue (4): 50-53.doi: 10.11896/jsjkx.190700175

• 数据库&大数据&数据科学 • 上一篇    下一篇


刘晓飞, 朱斐, 伏玉琛, 刘全   

  1. 苏州大学计算机科学与技术学院 江苏 苏州215006
  • 收稿日期:2019-07-25 出版日期:2020-04-15 发布日期:2020-04-15
  • 通讯作者: 伏玉琛(fuyuchen@163.com)
  • 基金资助:

Personalized Recommendation Algorithm Based on User Preference Feature Mining

LIU Xiao-fei, ZHU Fei, FU Yu-chen, LIU Quan   

  1. School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • Received:2019-07-25 Online:2020-04-15 Published:2020-04-15
  • Contact: FU Yu-chen,born in 1968,Ph.D,professor,is a member of China Computer Federation.His main research interests include reinforcement learning and intelligence information processing.
  • About author:LIU Xiao-fei,born in 1995,postgra-duate.His main research interests include machine learning and intelligence information processing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (60673092).

摘要: 为了提升社交网络个性化推荐能力,结合用户行为分布进行个性化推荐设计,文中提出基于用户行为特征挖掘的个性化推荐算法,构建社交网络的用户行为信息特征挖掘模型,采用显著数据分块检测方法对社交网络用户特征的行为信息进行融合处理,提取反映用户偏好的语义信息特征量。从情感、关键词和结构等方面根据用户行为特征组,结合模糊信息感知方法进行社交网络个性化推荐过程中的信息融合处理,在关联规则约束控制下,构建社交网络用户偏好特征的混合推荐模型,实现用户偏好特征挖掘,根据语义分布和用户的行为偏好实现社交网络的个性化信息推荐。仿真结果表明,采用所提方法进行社交网络个性化推荐的特征分辨能力较好,对用户行为特征的准确识别能力较强,提高了社交网络推荐输出的准确性。

关键词: 个性化推荐, 社交网络, 特征挖掘, 用户偏好

Abstract: For the purpose of personalized recommendation ability of social network,this paper proposed a personalized recommendation algorithm based on user behavior feature mining according to the distribution of user behavior.The user behavior information feature mining model of social network is constructed,the big data fusion scheduling method is used to fuse the behavior information of social network user characteristics,and the semantic information features that reflect the user preference are extracted.According to the user’s behavior feature groups from the aspects of emotion,keywords and structure,combined with the fuzzy information perception method,the information scheduling in the process of personalized recommendation of social network is carried out.Under the control of association rules constraints,a hybrid recommendation model of user preference features is constructed to realize user preference feature mining,and personalized information recommendation of social networks is realized according to semantic distribution and user behavior preference.The simulation results show that the poposed method has good feature resolution ability and accurate recognition ability to user behavior features,which improves the confidence level of social network recommendation output.

Key words: Feature mining, Personalized recommendation, Social network, User preference


  • TP391
[1]LI Y Z,ZHU Y Y,ZHONG M.k-core filtered influence maximization algorithms in social networks[J].Journal of Computer Applications,2018,38(2):464-470.
[2] CAO J X,DONG D,XU S,et al.A k-core based algorithm for influence maximization in social networks[J].Chinese Journal of Computers,2015,38(2):238-248.
[3]WANG L,MENG X F,GUO S N.Preservation of implicit privacy in spatio-temporal data publication[J].Journal of Software,2016,27(8):1922-1933.
[4]YANG F R,ZHENG Y J,ZHANG C.Hybrid recommendation algorithm based on probability matrix factorization[J].Journal of Computer Applications,2018,38(3):644-649.
[5]XIAO Y P,SUN H C,DAI T J,et al.A social network recommendation system scoring prediction method based on cloud model [J].Journal of Electronics,2018,46(7):1762-1767.
[6]BI S,HO C K,ZHANG R.Wireless powered communication:opportunities and challenges[J].IEEE Communications Magazine,2015,53(4):117-125.
[7]ULUKUS S,YENER A,ERKIP E,et al.Energy harvesting wireless communications:a review of recent advances[J].IEEE Journal on Selected Areas in Communications,2015,33(3):360-381.
[8]ZHAO N,ZHANG S,YU R,et al.Exploiting interference for energy harvesting:a survey,research issues and challenges[J].IEEE Access,2017(5):10403-10421.
[9]CHEN W Z,ZHANG S,WANG D J,et al.A recommendation algorithm for elective courses in university based on nearest neighbor model and probability matrix factorization[J].Journal of Liaoning Technical University,2017(9):976-982.
[10]JIANG Y,ZHANG D F,DIAO Z L.Similarity Personalized Recommendation of User Matrix Model Based on Click Stream[J].Computer Engineering,2018,44(1):219-225.
[11]CHEN H L.A Personalized Recommendation Algorithm Based on the Fusion of Trust Relation and Time Series[C]//IEEE International Conference on Computational Science&Engineering.IEEE,2017.
[12]SUN H,MA Y,YANG H B,et al.Collaborative Filtering Recommendation Algorithm by Optimizing Similarity and Clustering Users[J].Journal of Chinese Computer Systems,2014,35(9):1967-1970.
[13]HU Y,JI B F,HUANG Y M,et al.Energy-efficient resource allocation algorithm for massive MIMO OFDMA downlink system[J].Journal on Communications,2015,36(7):40-47.
[14] HU J,ZHU H W,MAO Y M.DBSCAN Clustering Algorithm Based on Adaptive Bee Colony Optimization[J].Computer Engineering and Applications,2019,55(14):105-114.
[15]ZHAO Z B,SHI Y X,LI B Y.Newly-emerging Domain Word Detection Method Based on Syntactic Analysis and Term Vector[J].Computer Science,2019,46(6):29-34.
[16]YANG J,WEI C H.Testing Serial Correlation in Partially Linear Additive Models[J].Acta Mathematicae Applicatae Sinica,English Serie,2019,35(2):401-411.
[17]DOU Q,CHEN H,YU L Q,et al.Multi-level contextual 3D CNNs for false positive reduction in pulmonary nodule detection[J].IEEE Transactions on Biomedical Engineering,2017,64(7):1558-1567.
[18]LEE G M,LEE J H.On nonsmooth optimality theorems for robust multiobjective optimization problems[J].Journal of Nonlinear and Convex Analysis,2015,16(10):2039-2052.
[19]LONG Z Y,CHEN Z G,XU C L.Social Network Friend Recommendation Algorithm Based on User Interaction.Computer Engineering,2019,45(3):132-137.
[20]LI L,ZHANG H N,LI Z B,et al.Research of Collaborative Filtering Recommendation Algorithm Fusion User Attributes in Government Purchase.Journal of Chongqing University of Technology(Natural Science),2015,29(1):76-81.
[1] 张佳, 董守斌.
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[2] 王剑, 彭雨琦, 赵宇斐, 杨健.
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[3] 魏鹏, 马玉亮, 袁野, 吴安彪.
Study on Temporal Influence Maximization Driven by User Behavior
计算机科学, 2022, 49(6): 119-126. https://doi.org/10.11896/jsjkx.210700145
[4] 熊中敏, 舒贵文, 郭怀宇.
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[5] 余皑欣, 冯秀芳, 孙静宇.
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
[6] 畅雅雯, 杨波, 高玥琳, 黄靖云.
Modeling and Analysis of WeChat Official Account Information Dissemination Based on SEIR
计算机科学, 2022, 49(4): 56-66. https://doi.org/10.11896/jsjkx.210900169
[7] 左园林, 龚月姣, 陈伟能.
Budget-aware Influence Maximization in Social Networks
计算机科学, 2022, 49(4): 100-109. https://doi.org/10.11896/jsjkx.210300228
[8] 高志宇, 王天荆, 汪悦, 沈航, 白光伟.
Traffic Prediction Method for 5G Network Based on Generative Adversarial Network
计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240
[9] 郭磊, 马廷淮.
Friend Closeness Based User Matching
计算机科学, 2022, 49(3): 113-120. https://doi.org/10.11896/jsjkx.210200137
[10] 王剑, 王玉翠, 黄梦杰.
False Information in Social Networks:Definition,Detection and Control
计算机科学, 2021, 48(8): 263-277. https://doi.org/10.11896/jsjkx.210300053
[11] 谭琪, 张凤荔, 王婷, 王瑞锦, 周世杰.
Social Network User Influence Evaluation Algorithm Integrating Structure Centrality
计算机科学, 2021, 48(7): 124-129. https://doi.org/10.11896/jsjkx.200600096
[12] 王辉, 朱国宇, 申自浩, 刘琨, 刘沛骞.
Dummy Location Generation Method Based on User Preference and Location Distribution
计算机科学, 2021, 48(7): 164-171. https://doi.org/10.11896/jsjkx.200800069
[13] 孙振强, 罗永龙, 郑孝遥, 章海燕.
Intelligent Travel Route Recommendation Method Integrating User Emotion and Similarity
计算机科学, 2021, 48(6A): 226-230. https://doi.org/10.11896/jsjkx.200900119
[14] 张人之, 朱焱.
Malicious User Detection Method for Social Network Based on Active Learning
计算机科学, 2021, 48(6): 332-337. https://doi.org/10.11896/jsjkx.200700151
[15] 梁浩宏, 古天龙, 宾辰忠, 常亮.
Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation
计算机科学, 2021, 48(5): 109-116. https://doi.org/10.11896/jsjkx.200600115
Full text



No Suggested Reading articles found!