计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 152-159.doi: 10.11896/jsjkx.220900035
黄露, 倪葎, 金澈清
HUANG Lu, NI Lyu, JIN Cheqing
摘要: 近几年,推荐算法快速增长,但大多数研究都重点关注如何利用机器学习模型更好地拟合历史交互数据。然而,推荐系统中的历史交互数据往往是观察性的,而非实验性数据。观测数据存在多种偏差,其中最典型的是流行度偏差。大多数处理流行度偏差的方法采用去除流行度偏差的策略,但是去偏策略本质上难以提升推荐精准性,这是因为推荐算法所引起的偏差会扩大。因此,同时在训练和推断阶段充分利用流行度偏差的纠偏策略更为可行。文中结合因果图分别从用户和物品两个角度来纠偏,提出了一个双偏去混及调整模型(Double Bias Deconfounding and Adjusting,DBDA)。在训练阶段剥离产生不利影响的流行度偏差,并在推断阶段根据流行度的变化趋势,对用户偏好做出更为精准的预测。在3个大规模公开数据集上进行实验,结果表明,相比目前的最优方法,所提方法在各个评价指标上提升了2.48%~19.70%。
中图分类号:
[1]CHEN J W,WANG X,FENG F L,et al.Bias issues and solutions in recommender system:Tutorial on the RecSys 2021[C]//Proceedings of the 15th ACM Conference on Recommender Systems.Amsterdam,New York:ACM,2021:825-827. [2]SCHNABELT,SWAMINATHAN A,SINGH A,et al.Recommendations as treatments:debiasing learning and evaluation[C]//Proceedings of the 33rd International Conference on Machine Learning.New York:ACM,2016:1670-1679. [3]BONNER S,VASILE F.Causal embeddings forrecommenda-tion[C]//Proceedings of the 12th ACM Conference on Recommender Systems.New York:ACM,2018:104-112. [4]ZHENG Y,GAO C,LI X,et al.Disentangling user interest and conformity forrecommendation with causal embedding[C]//Proceedings of the Web Conference 2021.New York:ACM,2021:2980-2991. [5]ZHANG Y,FENG F L,HE X N,et al.Causalintervention forleveraging popularity bias in recommendation[C]//Proceedings of the 44th ACM SIGIR Conference on Research and Development in Information Retrieval,2021.New York:ACM,2021:11-20. [6]PEARL J.Causality(2nd ed)[M].New York:Cambridge univer-sity press,2009:65-106. [7]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence,2009.AUAI,2009:452-461. [8]XU S Y,TAN J T,HEINECKE S,et al.Deconfounded causal collaborative filtering[J].arXiv:2110.07122,2021. [9]WEI T X,FENG F L,CHEN J W,et al.Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,Virtual Event,2021.New York:ACM,2021:1791-1800. [10]WANG W J,FENG F L,HE X N,et al.Deconfounded recommendation for alleviating bias amplification[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,2021.New York:ACM,2021:1717-1725. [11]GLYMOUR M,PEARL J,JEWELL N.PCausal inference instatistics:a primer[M].New York:John Wiley & Sons,2016. [12]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].the IEEE Computer Society,2009,42(8):30-37. [13]CLEVERT D A,UNTERTHINER T,HOCHREITER S.Fastand accurate deep network learning by exponential linear units(elus) [C]//Proceedings of the 4th International Conference on Learning Representations,2016.OpenReview.net,2016. [14]SONG W P,XIAO Z P,WANG Y F,et al.Session-Based social recommendation via dynamic graph attention networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining,2019.New York:ACM,2019:555-563. [15]KINGMA D P,BA J.Adam:a method for stochastic optimization[J].arXiv:1412.6980,2014. |
|