计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 187-198.doi: 10.11896/jsjkx.240600162
孙晋永, 王雪纯, 蔡国永, 尚之量
SUN Jinyong, WANG Xuechun, CAI Guoyong, SHANG Zhiliang
摘要: 传统图像分类算法假定世界是静态、封闭的,而大数据时代的真实世界却是动态、开放的,新类别及其样本不断出现,导致传统图像分类算法的准确率降低。针对这种情况,研究者提出了适用于真实世界的开放集识别问题,目标是从样本集中识别出未知类样本,同时保持对已知类样本的分类准确性。但现有的开放集识别方法都忽略了对识别出的未知类样本的进一步利用,且未知类样本通常数量较少,这些情况导致开放集识别模型无法增量地学习到已识别出的未知类样本蕴含的知识,影响了开放集识别模型的准确性和泛化性。为此,提出一种基于元增量学习的开放集识别方法,来提高开放集识别模型的准确性和泛化性。该方法使用双层优化机制构建开放集识别模型,对未知类样本进行深度聚类,使模型能够对聚类后的未知类样本进行增量学习。具体来说,首先,构建基于双层优化机制的开放集识别模型,并对其进行训练,使其具备对少量未知类样本进行增量学习的能力。然后,使用权重激励注意力机制来获取开放集识别模型参数的重要性,对模型的非关键参数进行更新,减少增量学习对模型的已知类分类能力的影响。其次,设计深度DBSCAN方法对未知类样本进行聚类,将每簇样本标记为一类,并使模型对其增量学习,丢弃离散样本,减少离散样本对增量学习效果的影响。最后,在4个公开数据集上进行实验,结果表明,相较于主流的开放集识别方法,所提方法在AUROC和F1分数上均具有更好的效果,可以充分地学习识别出的未知类样本的知识。
中图分类号:
[1]ZHAO H W,WU H,MA K,et al.Image classification frame-work based on knowledge distillation.[J].Journal of Jilin University(Engineering and Technology Edition),2024,54(8):2307-2312. [2]ZHANG H Y,XIA Y L,ZHOU K W,et al.A Method of Multi-label Image Classification with Fusing Powerful Semantic Correlation[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(5):8-15. [3]SCHEIRER W J,DE REZENDE ROCHA A,SAPKOTA A,et al.Toward open set recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI),2012,35(7):1757-1772. [4]ZHOU D W,WANG Q W,QI Z H,et al.Deep class-incremental learning:A survey[J].arXiv:2302.03648,2023. [5]SCHEIRER W J,JAIN L P,BOULT T E.Probability models for open set recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(11):2317-2324. [6]SCHERREIK M D,RIGLING B D.Open set recognition for au-tomatic target classification with rejection[J].IEEE Transactions on Aerospace and Electronic Systems,2016,52(2):632-642. [7]BENDALE A,BOULT T E.Towards open set deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:1563-1572. [8]SHU L,XU H,LIU B.Doc:Deep open classification of text documents[C]//Conference on Empirical Methods in Natural Language Processing.2017:2243-2979. [9]ZHOU D W,YE H J,ZHAN D C.Learning placeholders foropen-set recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:4401-4410. [10]YANG H M,ZHANG X Y,YIN F,et al.Convolutional prototype network for open set recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(5):2358-2370. [11]LU J,XU Y,LI H,et al.Pmal:Open set recognition via robust prototype mining[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:1872-1880. [12]GE Z Y,DEMYANOV S,CHEN Z T,et al.Generative openmax for multi-class open set classification[C]//Computer Vision and Pattern Recognition(CVPR).2017. [13]NEAL L,OLSON M,FERN X,et al.Open set learning withcounterfactual images[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:613-628. [14]PERERA P,MORARIU V I,JAIN R,et al.Generative-discriminative feature representations for open-set recognition [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:11814-11823. [15]YANG Y,HOU C P,LANG Y,et al.Open-set human activity recognition based on micro-doppler signatures[J].Pattern Re-cognition,2019,85:60-69. [16]FENG Q,KANG G,FAN H,et al.Attract or distract:Exploit the margin of open set[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:7990-7999. [17]KONG S,RAMANAN D.Opengan:Open-set recognition viaopen data generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:813-822. [18]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [19]DE ROSA R,MENSINK T,CAPUTO B.Online open worldrecognition[J].arXiv:1604.02275,2016. [20]PRAKHYA S,VENKATARAM V,KALITA J.Open set text classification using CNNs[C]//Proceedings of the 14th International Conference on Natural Language Processing(ICON-2017).2017:466-475. [21]SHU Y,SHI Y,WANG Y,et al.P-odn:Prototype-based open deep network for open set recognition[J].Scientific Reports,2020,10(1):7146. [22]DANG S,CAO Z,CUI Z,et al.Open set incremental learning for automatic target recognition[J].IEEE Transactions on Geo-science and Remote Sensing,2019,57(7):4445-4456. [23]GAO F,YANG L,LI H.A survey on open set recognition[J].Journal of Nanjing University(Natural Sciences),2022,58(1):115-134. [24]BENDALE A,BOULT T.Towards open world recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:1893-1902. [25]GENG C,HUANG S,CHEN S.Recent advances in open setrecognition:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI),2020,43(10):3614-3631. [26]DE LANGE M,ALJUNDI R,MASANA M,et al.A continual learning survey:Defying forgetting in classification tasks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(7):3366-3385. [27]TAO X,HONG X,CHANG X,et al.Few-shot class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12183-12192. [28]HOSPEDALES T,ANTONIOU A,MICAELLI P,et al.Meta-learning in neural networks:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(9):5149-5169. [29]FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Confe-rence on Machine Learning.PMLR,2017:1126-1135. [30]SUN J Y,WANG X C,SUN Z G,el at.Prototype Contrastive Learning for Open Set Recognition[J].Journal of Chinese Computer Systems,2024,45(7):1671-1678. [31]YANN L C,DENKER J,SOLLA S.Optimal brain damage[J].Advances in Neural Information Processing Systems,1989,2:598-605. [32]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the National Academy of Sciences,2017,114(13):3521-3526. [33]CHI Z,GU L,LIU H,et al.Metafscil:A meta-learning approach for few-shot class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14166-14175. [34]QUADER N,BHUIYAN M M I,LU J,et al.Weight excitation:Built-in attention mechanisms in convolutional neural networks[C]//Computer Vision.2020:87-103. [35]SUN J Y,ZHOU B W,WEN L J,et al.Anomaly detection of business processes based on attention mechanism[J].Computer Integrated Manufacturing Systems,2022,28(10):3039-3051. [36]CARON M,BOJANOWSKI P,JOULIN A,et al.Deep cluste-ring for unsupervised learning of visual features[C]//Procee-dings of the European Conference on Computer Vision(ECCV).2018:132-149. [37]OZA P,PATEL V M.C2ae:Class conditioned auto-encoder for open-set recognition[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:2307-2316. |
|