Computer Science ›› 2025, Vol. 52 ›› Issue (5): 187-198.doi: 10.11896/jsjkx.240600162
• Computer Graphics & Multimedia • Previous Articles Next Articles
SUN Jinyong, WANG Xuechun, CAI Guoyong, SHANG Zhiliang
CLC Number:
[1]ZHAO H W,WU H,MA K,et al.Image classification frame-work based on knowledge distillation.[J].Journal of Jilin University(Engineering and Technology Edition),2024,54(8):2307-2312. [2]ZHANG H Y,XIA Y L,ZHOU K W,et al.A Method of Multi-label Image Classification with Fusing Powerful Semantic Correlation[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(5):8-15. [3]SCHEIRER W J,DE REZENDE ROCHA A,SAPKOTA A,et al.Toward open set recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI),2012,35(7):1757-1772. [4]ZHOU D W,WANG Q W,QI Z H,et al.Deep class-incremental learning:A survey[J].arXiv:2302.03648,2023. [5]SCHEIRER W J,JAIN L P,BOULT T E.Probability models for open set recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(11):2317-2324. [6]SCHERREIK M D,RIGLING B D.Open set recognition for au-tomatic target classification with rejection[J].IEEE Transactions on Aerospace and Electronic Systems,2016,52(2):632-642. [7]BENDALE A,BOULT T E.Towards open set deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:1563-1572. [8]SHU L,XU H,LIU B.Doc:Deep open classification of text documents[C]//Conference on Empirical Methods in Natural Language Processing.2017:2243-2979. [9]ZHOU D W,YE H J,ZHAN D C.Learning placeholders foropen-set recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:4401-4410. [10]YANG H M,ZHANG X Y,YIN F,et al.Convolutional prototype network for open set recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(5):2358-2370. [11]LU J,XU Y,LI H,et al.Pmal:Open set recognition via robust prototype mining[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:1872-1880. [12]GE Z Y,DEMYANOV S,CHEN Z T,et al.Generative openmax for multi-class open set classification[C]//Computer Vision and Pattern Recognition(CVPR).2017. [13]NEAL L,OLSON M,FERN X,et al.Open set learning withcounterfactual images[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:613-628. [14]PERERA P,MORARIU V I,JAIN R,et al.Generative-discriminative feature representations for open-set recognition [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:11814-11823. [15]YANG Y,HOU C P,LANG Y,et al.Open-set human activity recognition based on micro-doppler signatures[J].Pattern Re-cognition,2019,85:60-69. [16]FENG Q,KANG G,FAN H,et al.Attract or distract:Exploit the margin of open set[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:7990-7999. [17]KONG S,RAMANAN D.Opengan:Open-set recognition viaopen data generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:813-822. [18]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [19]DE ROSA R,MENSINK T,CAPUTO B.Online open worldrecognition[J].arXiv:1604.02275,2016. [20]PRAKHYA S,VENKATARAM V,KALITA J.Open set text classification using CNNs[C]//Proceedings of the 14th International Conference on Natural Language Processing(ICON-2017).2017:466-475. [21]SHU Y,SHI Y,WANG Y,et al.P-odn:Prototype-based open deep network for open set recognition[J].Scientific Reports,2020,10(1):7146. [22]DANG S,CAO Z,CUI Z,et al.Open set incremental learning for automatic target recognition[J].IEEE Transactions on Geo-science and Remote Sensing,2019,57(7):4445-4456. [23]GAO F,YANG L,LI H.A survey on open set recognition[J].Journal of Nanjing University(Natural Sciences),2022,58(1):115-134. [24]BENDALE A,BOULT T.Towards open world recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:1893-1902. [25]GENG C,HUANG S,CHEN S.Recent advances in open setrecognition:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI),2020,43(10):3614-3631. [26]DE LANGE M,ALJUNDI R,MASANA M,et al.A continual learning survey:Defying forgetting in classification tasks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(7):3366-3385. [27]TAO X,HONG X,CHANG X,et al.Few-shot class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12183-12192. [28]HOSPEDALES T,ANTONIOU A,MICAELLI P,et al.Meta-learning in neural networks:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(9):5149-5169. [29]FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Confe-rence on Machine Learning.PMLR,2017:1126-1135. [30]SUN J Y,WANG X C,SUN Z G,el at.Prototype Contrastive Learning for Open Set Recognition[J].Journal of Chinese Computer Systems,2024,45(7):1671-1678. [31]YANN L C,DENKER J,SOLLA S.Optimal brain damage[J].Advances in Neural Information Processing Systems,1989,2:598-605. [32]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the National Academy of Sciences,2017,114(13):3521-3526. [33]CHI Z,GU L,LIU H,et al.Metafscil:A meta-learning approach for few-shot class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14166-14175. [34]QUADER N,BHUIYAN M M I,LU J,et al.Weight excitation:Built-in attention mechanisms in convolutional neural networks[C]//Computer Vision.2020:87-103. [35]SUN J Y,ZHOU B W,WEN L J,et al.Anomaly detection of business processes based on attention mechanism[J].Computer Integrated Manufacturing Systems,2022,28(10):3039-3051. [36]CARON M,BOJANOWSKI P,JOULIN A,et al.Deep cluste-ring for unsupervised learning of visual features[C]//Procee-dings of the European Conference on Computer Vision(ECCV).2018:132-149. [37]OZA P,PATEL V M.C2ae:Class conditioned auto-encoder for open-set recognition[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:2307-2316. |
[1] | SUN Tanghui, ZHAO Gang, GUO Meiqian. Long-tail Distributed Medical Image Classification Based on Large Selective Nuclear Bilateral-branch Networks [J]. Computer Science, 2025, 52(4): 231-239. |
[2] | WANG Yifei, ZHANG Shengjie, XUE Dizhan, QIAN Shengsheng. Self-supervised Backdoor Attack Defence Method Based on Poisoned Classifier [J]. Computer Science, 2025, 52(4): 336-342. |
[3] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
[4] | WU Jie, WAN Yuan, LIU Qiujie. Consistent Block Diagonal and Exclusive Multi-view Subspace Clustering [J]. Computer Science, 2025, 52(4): 138-146. |
[5] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[6] | SHEN Yaxin, GAO Lijian , MAO Qirong. Semi-supervised Sound Event Detection Based on Meta Learning [J]. Computer Science, 2025, 52(3): 222-230. |
[7] | XIE Jiachen, LIU Bo, LIN Weiwei , ZHENG Jianwen. Survey of Federated Incremental Learning [J]. Computer Science, 2025, 52(3): 377-384. |
[8] | ZHANG Manjing, HE Yulin, LI Xu, HUANG Zhexue. Distributed Two-stage Clustering Method Based on Node Sampling [J]. Computer Science, 2025, 52(2): 134-144. |
[9] | XIN Yongjie, CAI Jianghui, HE Yanting, SU Meihong, SHI Chenhui, YANG Haifeng. Multi-view Clustering Based on Cross-structural Feature Selection and Graph Cycle AdaptiveLearning [J]. Computer Science, 2025, 52(2): 145-157. |
[10] | ZHANG Xin, ZHANG Han, NIU Manyu, JI Lixia. Adversarial Sample Detection in Computer Vision:A Survey [J]. Computer Science, 2025, 52(1): 345-361. |
[11] | DING Xinyu, KONG Bing, CHEN Hongmei, BAO Chongming, ZHOU Lihua. Path-masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering [J]. Computer Science, 2025, 52(1): 160-169. |
[12] | ZHOU Yu, YANG Junling, DANG Kelin. Change Detection in SAR Images Based on Evolutionary Multi-objective Clustering [J]. Computer Science, 2024, 51(9): 140-146. |
[13] | LI Zekai, ZHONG Jiaqing, FENG Shaojun, CHEN Juan, DENG Rongyu, XU Tao, TAN Zhengyuan, ZHOU Kexing, ZHU Pengzhi, MA Zhaoyang. CPU Power Modeling Accuracy Improvement Method Based on Training Set Clustering Selection [J]. Computer Science, 2024, 51(9): 59-70. |
[14] | WANG Yiyang, LIU Fagui, PENG Lingxia, ZHONG Guoxiang. Out-of-Distribution Hard Disk Failure Prediction with Affinity Propagation Clustering and Broad Learning Systems [J]. Computer Science, 2024, 51(8): 63-74. |
[15] | WANG Xingeng, DU Tao, ZHOU Jin, CHEN Di, WU Yunzheng. Adaptive Density Peak Clustering Algorithm Based on Shared Nearest Neighbor [J]. Computer Science, 2024, 51(8): 97-105. |
|