计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 103-110.doi: 10.11896/jsjkx.200900146

所属专题: 智能化边缘计算

• 智能化边缘计算* 上一篇    下一篇

基于用户延迟感知的移动边缘服务器放置方法

郭飞雁, 唐兵   

  1. 湖南科技大学计算机科学与工程学院 湖南 湘潭 411201
  • 收稿日期:2020-09-20 修回日期:2020-11-18 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 唐兵(btang@hnust.edu.cn)
  • 作者简介:fyguo@mail.hnust.edu.cn
  • 基金资助:
    湖南省教育厅重点项目(18A186);湖南省自然科学基金(2018JJ2135)

Mobile Edge Server Placement Method Based on User Latency-aware

GUO Fei-yan, TANG Bing   

  1. School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China
  • Received:2020-09-20 Revised:2020-11-18 Online:2021-01-15 Published:2021-01-15
  • About author:GUO Fei-yan,born in 1982,Ph.D student.Her main research interests include service computing and edge computing.
    TANG Bing,born in 1982,Ph.D,asso-ciate professor,is a member of China Computer Federation.His main research interests include parallel and distributed computing,cloud computing,etc.
  • Supported by:
    Scientific Research Fund of Hunan Provincial Education Department(18A186) and Natural Science Foundation of Hunan Province(2018JJ2135).

摘要: 物联网和5G网络的快速发展产生了大量数据,通过将计算任务从移动设备卸载到具有足够计算资源的边缘服务器上,可有效减少网络拥塞和数据传播延迟等问题。边缘服务器放置是任务卸载的核心,高效的边缘服务器放置方法能有效满足移动用户访问低时延、高带宽等需求。为此,文中以最小化访问延迟和最小化负载差异为优化目标,建立边缘服务器放置优化模型;然后,提出了一种基于改进启发式算法的移动边缘服务器放置方法ESPHA (Edge Server Placement Based on Heuristic Algorithm),实现多目标优化。首先将K-means算法与蚁群算法相结合,通过效仿蚁群在觅食过程中共享信息素,将信息素反馈机制引入边缘服务器放置方法中,然后,通过设置禁忌表对蚁群算法进行改进,提高算法的收敛速度;最后,用改进的启发式算法求解模型的最优放置方案。使用上海电信真实数据集进行实验,结果表明提出的ESPHA方法在保证服务质量的前提下取得了低延迟和负载均衡之间的优化平衡,其效果优于现有的其他几种代表性的方法。

关键词: 边缘服务器放置, 访问延迟, 负载均衡, 启发式算法, 移动边缘计算

Abstract: The rapid development of the Internet-of-Things and 5G networks generates a large amount of data.By offloading computing tasks from mobile devices to edge servers with sufficient computing resources,network congestion and data propagation delays can be effectively reduced.The placement of edge server is the core of task offloading,and efficient placement method can effectively satisfy the needs of mobile users to access services with low latency and high bandwidth.To this end,an optimization model of edge server placement is established through minimizing both access delay and load difference as the optimization goal.Then,based on the heuristic algorithm,a mobile edge server placement method called ESPHA (Edge Server Placement Method Based on Heuristic Algorithm) is proposed to achieve multi-objective optimization.Firstly,the K-means algorithm is combined with the ant colony algorithm,the pheromone feedback mechanism is introduced into the placement method by emulating the mechanism of ant colony sharing pheromone in the foraging process,and the ant colony algorithm is improved by setting the taboo table to improve the convergence speed.Finally,the improved heuristic algorithm is used to solve the optimal placement.Experiments using Shanghai Telecom's real datasets show that the proposed method achieves an optimal balance between low latency and load balancing under the premise of guaranteeing quality of service,and outperforms several existing representative methods.

Key words: Access delay, Edge server placement, Heuristic algorithm, Mobile edge computing, Workload balancing

中图分类号: 

  • TP311.5
[1] ZHAO Z,LIU F,CAI Z,et al.Edge Computing:Platforms,Applications and Challenges[J].Journal of Computer Research and Development,2018,55(2):327-337.
[2] ZENG J,ZHANG J,LIN B,et al.Micro cloud load balancing algorithm based on wireless metropolitan area network[J].Computer Science,2019,46(8):163-170.
[3] XIA Q,LIANG W,XU W.Throughput maximization for online request admissions in mobile cloudlets[C]//IEEE Conference on Local Computer Networks.IEEE,2014.
[4] VERBELEN T,SIMOENS P,TURCK F D,et al.Cloudlets:bringing the cloud to the mobile user[C]//ACM Workshop on Mobile Cloud Computing & Services.2012.
[5] CHUN B,IHM S,MANIATIS P,et al.Clonecloud:elastic execution between mobile device and cloud[C]//The Sixth Confe-rence on Computer Systems.2011.
[6] XU Z,LIANG W,XU W.Capacitated cloudlet placements in wireless metropolitan area networks[C]//IEEE 40thConfe-rence on Local Computer Networks.2015.
[7] XU Z,LIANG W,XU W,et al.Efficient Algorithms for Capacitated Cloudlet Placements[J].IEEE Transactions on Parallel & Distributed Systems,2016,27(10):2866-2880.
[8] ZHANG J,LIN B,LU Y,et al.Cloudlet Placement and User Task Scheduling Based on Wireless Metropolitan Area Networks[J].Computer Science,2019,46 (6):128-134.
[9] SHI W,CAO J,ZHANG Q,et al.Edge Computing:Vision and Challenges[J].Internet of Things Journal,IEEE,2016,3(5):637-646.
[10] SARRIGIANNIS I,KARTSAKLI E,RAMANTAS K,et al.Application and Network VNF migration in a MEC-enabled 5G Architecture[C]//IEEE CAMAD.IEEE,2018.
[11] HSIEH H C,CHEN J L,BENSLIMANE A.5G Virtualized Multi-access Edge Computing Platform for IoT Applications[J].Journal of Network and Computer Applications,2018,115(8):94-102.
[12] WANG C,LIANG C,YU F R,et al.Computation Offloadingand Resource Allocation in Wireless Cellular Networks With Mobile Edge Computing[J].IEEE Transactions on Wireless Communications,2017,16(8):4924-4938.
[13] DAI Y,XU D,MAHARJAN S,et al.Joint Computation Offloading and User Association in Multi-Task Mobile Edge Computing[J].IEEE Trans.Vehicular Technology,2018,67(12):12313-12325.
[14] DINH T Q,LA Q D,QUEK T Q S,et al.Learning for Computation Offloading in Mobile Edge Computing[J].IEEE Transactions on Communications,2018,66(12):6353-6367.
[15] XIAO M,CHUANG L,HAN Z,et al.Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing[J].Sensors,2018,18(6):1945.
[16] CHEN X,JIAO L,LI W,et al.Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing[J].IEEE/ACM Transactions on Networking,2016,24(5):2795-2808.
[17] QIU L,PADMANABHAN V N,VOELKER G M.On thePlacement of Web Server Replicas[C]//IEEE INFOCOM 2001.Anchorage,Alaska,USA,2001:1587-1596.
[18] YIN H,ZHANG X,ZHAN T,et al.NetClust:A Framework for Scalable and Pareto-Optimal Media Server Placement[J].IEEE Transactions on Multimedia,2013,15(8):2114-2124.
[19] JIA M,CAO J,LIANG W.Optimal Cloudlet Placement andUser to Cloudlet Allocation in Wireless Metropolitan Area Networks[J].IEEE Transactions on Cloud Computing,2017,5(4):725-737.
[20] XU Z,LIANG W,XU W,et al.Efficient Algorithms for Capacitated Cloudlet Placements[J].IEEE Transactions on Parallel & Distributed Systems,2016,27(10):2866-2880.
[21] ZHAO J,OU S,HU L,et al.A heuristic placement selection approach of partitions of mobile applications in mobile cloud computing model based on community collaboration[J].Cluster Computing,2017,20(4):3131-3146.
[22] LIANG T,LI Y.A Location-Aware Service Deployment Algorithm Based on K-Means for Cloudlets[J].Mobile Information Systems,2017,8342859:1-8342859:10.
[23] YAO H,BAI C,XIONG M,et al.Heterogeneous cloudlet deployment and user-cloudlet association toward cost effective fog computing[J].Concurrency and Computation:Practice and Experience,2017,29(17):e3975.
[24] ZHANG J,LI X,ZHANG X,et al.Service offloading oriented edge server placement in smart farming[J/OL].Software Practice and Experience.https://doi.org/10.1002/spe.2847.
[25] XU X,XUE Y,QI L,et al.Load-aware Edge Server Placement for Mobile Edge Computing in 5G networks[C]//The 17th International Conference on Service-oriented Computing.2019.
[26] WANG S,ZHAO Y,XU J,et al.Edge server placement in mobile edge computing[J].Journal of Parallel and Distributed Computing,2018,127(MAY):160-168.
[27] REN Y,ZENG F,LI W,et al.A Low-Cost Edge Server Placement Strategy in Wireless Metropolitan Area Networks[C]//2018 27th International Conference on Computer Communication and Networks (ICCCN).2018.
[1] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[2] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[3] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[4] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[5] 田真真, 蒋维, 郑炳旭, 孟利民.
基于服务器集群的负载均衡优化调度算法
Load Balancing Optimization Scheduling Algorithm Based on Server Cluster
计算机科学, 2022, 49(6A): 639-644. https://doi.org/10.11896/jsjkx.210800071
[6] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[7] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[8] 高捷, 刘沙, 黄则强, 郑天宇, 刘鑫, 漆锋滨.
基于国产众核处理器的深度神经网络算子加速库优化
Deep Neural Network Operator Acceleration Library Optimization Based on Domestic Many-core Processor
计算机科学, 2022, 49(5): 355-362. https://doi.org/10.11896/jsjkx.210500226
[9] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[10] 张海波, 张益峰, 刘开健.
基于NOMA-MEC的车联网任务卸载、迁移与缓存策略
Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC
计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157
[11] 耿海军, 王威, 尹霞.
基于混合软件定义网络的单节点故障保护方法
Single Node Failure Routing Protection Algorithm Based on Hybrid Software Defined Networks
计算机科学, 2022, 49(2): 329-335. https://doi.org/10.11896/jsjkx.210100051
[12] 谭双杰, 林宝军, 刘迎春, 赵帅.
基于机器学习的分布式星载RTs系统负载调度算法
Load Scheduling Algorithm for Distributed On-board RTs System Based on Machine Learning
计算机科学, 2022, 49(2): 336-341. https://doi.org/10.11896/jsjkx.201200126
[13] 夏中, 向敏, 黄春梅.
基于CHBL的P2P视频监控网络分层管理机制
Hierarchical Management Mechanism of P2P Video Surveillance Network Based on CHBL
计算机科学, 2021, 48(9): 278-285. https://doi.org/10.11896/jsjkx.201200056
[14] 梁俊斌, 张海涵, 蒋婵, 王天舒.
移动边缘计算中基于深度强化学习的任务卸载研究进展
Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095
[15] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!