计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 771-776.doi: 10.11896/jsjkx.210600241

• 交叉&应用 • 上一篇    下一篇

适用于各单元共识交易的电力区块链系统优化调度研究

周航1,2, 姜河1,2, 赵琰1,2, 解相朋3   

  1. 1 沈阳工程学院新能能源学院 沈阳 110136
    2 辽宁省区域多能源系统集成与控制重点实验室 沈阳 110136
    3 南京邮电大学先进技术研究院 南京 210003
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 姜河(jianghescholar@163.com)
  • 作者简介:(zhouhang980418@163.com)
  • 基金资助:
    辽宁省博士科研启动基金(2020-BS-181);国家自然科学基金优秀青年基金(62022044);兴辽英才计划(XLYC1907138);辽宁省重点研发计划(2020JH2/10300101)

Study on Optimal Scheduling of Power Blockchain System for Consensus Transaction ofEach Unit

ZHOU Hang1,2, JIANG He1,2, ZHAO Yan1,2, XIE Xiang-peng3   

  1. 1 School of Renewable Energy,Shenyang Institute of Engineering,Shenyang 110136,China
    2 Key Laboratory of Regional Multi-energy System Integration and Control of Liaoning Province,Shenyang 110136,China
    3 Institute of Advanced Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:ZHOU Hang,born in 1998,postgra-duate.His main research interests include blockchain and economic dispatch of power systems.
    JIANG He,born in 1991,Ph.D.His main research interests include blockchain and reinforcement learning.
  • Supported by:
    Doctoral Scientific Research Foundation of Liaoning Province(2020-BS-181),Excellent Youth Foundation of National Natural Science Foundation of China (62022044),Liaoning Revitalization Talents Program (XLYC1907138) and Key R & D Program of Liaoning Province(2020JH2/10300101).

摘要: 随着冷热电耦合程度不断加深,分布式电源、中小型发电用户及其伴随负荷的并入给电网运行带来了新挑战。为解决各中小型用户之间及其与大电网之间交易的互信问题,保证各类分布式能源的协调互补,促进可再生能源发电就地消纳,首先针对中小型用户与大电网交易存在不透明环节等问题,应用区块链的各方共识互信机制建立第三方运营商与分布式多能源单元间的共识交易架构。其次,以运营商的效益成本与分布式多能源单元不同阶段的运行成本为目标函数构建数学模型。然后,依据区块链技术的加密广播机制,提出适用于运营商与各分布式多能源单元运行目标的共识交易策略,保证各单元通过运营商的整合达到交易互信、多能源协调互补及新能源就地消纳的运行目标。最后,经算例仿真验证了所提模型与方法的有效性与可行性。

关键词: 共识交易, 能源互补, 区块链, 新能源消纳

Abstract: With the deepening of coupling of cold and heat electricity,distributed generation,medium-sized generators and their associated loads are gradually integrated into the grid.It brings new challenges to power grid operation.In order to solve the mutual trust problem between medium-sized users and large power grids,promote the local consumption of renewable energy and the coordinated complementarity of distributed energy,firstly,for the problems of opaque links in transactions between medium-sized users and large power grids,the consensus trading architecture between third-party operators and distributed multi-energy units is established by applying the consensus and mutual trust mechanism of blockchain.Secondly,the objective function is constructed based on the benefit cost of the operator and the operating cost of the distributed multi-energy units at different stages.The objective function is used to construct a mathematical model of its reasonable operation.Then,based on the encrypted broadcast mechanism of blockchain technologies,a consensus trading strategy for operators and distributed multi-energy units is proposed.It ensures that each unit achieves the operational objectives of mutual trust,multi-energy coordinated complementary and local consumption of renewable energy through the integration of operators.Finally,experimental simulation results verify the effectiveness and feasibility of the proposed model and method.

Key words: Blockchain, Consensus transaction, Energy complementarity, New energy accommodation

中图分类号: 

  • TP309
[1] YE Z,LI X Q,JIANG F,et al.Hierarchical Optimization Economic Dispatching of Combined Wind-PV-thermal-energy Sto-rage System Considering the Optimal Energy Abandonment Rate[J].Power System Technology,2021,45(6):2270-2280.
[2] ZHOU B X,YANG M T,SHI S Q,et al.Blockchain Based Potential Game Model of Microgrid Market[J].Automation of Electric Power Systems,2020,44(7):15-22.
[3] YANG M T,ZHOU B X,DONG S,et al.Design and Dispatch Optimization of Microgrid Electricity Market Supported by Blockchain[J].Electric Power Automation Equipment,2019,39(12):155-161.
[4] QIN J L,SUN W Q,LI Z,et al.Credit Consensus Mechanism for Microgrid Blockchain[J].Automation of Electric Power Systems,2020,44(15):10-18.
[5] GHOSE T,PANDEY H W,GADHAM K R.Risk Assessment of Microgrid Aggregators Considering Demand Response and Uncertain Renewable Energy Sources[J].Journal of Modern Power Systems and Clean Energy,2019,36(15):4011-4023.
[6] SHAO W H,XU W S,XU Z Y,et al.Study on Virtual Power Plant Model Based on Blockchain[J].Computer Science,2018,45(2):25-31.
[7] XU C J,LI X F.Data Privacy Protection Method of Blockchain Transaction[J].Computer Science,2020,47(3):281-286.
[8] WU J X,GAO Y,ZHANG Z Y,et al.A Multi-Party Privacy Preserving Fair Contract Signing Protocol based on Blockchains[J].Journal of Cyber Security,2018,3(3):13-21.
[9] GONG G J,ZHANG X Y,ZHANG Z N,et al.Multi-Microgrid Co-governance Transaction Model Based on Dynamic Cooperation Game of Blockchain[J].Proceedings of the CSEE,2021,41(3):803-819.
[10] ZHANG G W.Research on Trusted Computing Scheme Based on Block Chain and Internet of Things[J].Journal of Physics:Conference Series,2020,1648(2):022070.
[11] BAI R C,PANG C X,JIA J,et al.Design of Cloud Plaform for Energy Internet of Things Based on LPWAN Multi-protocol[J].Computer Science,2019,46(S1):589-592.
[12] AFZAL M,HUANG Q,AMIN W,et al.Blockchain EnabledDistributed Demand Side Management in Community Energy System with Smart Homes[J].IEEE Access,2020,8:37428-37439.
[13] MA T N,PENG L L,DU Y,et al.Competition Game Model for Local Multi-microgrid Market Based on Blockchain Technology and Its Solution Algorithm[J].Automation of Electric Power Systems,2018,38(5):191-203.
[14] GONG G J,ZHANG Z N,ZHANG X Y,et al.Electric Power System Operation Mechanism with Energy Routers Based on QoS Index Under Blockchain Architecture[J].Energies,2020,13(2):418.
[15] SRINIVASAN D,TRUNG L T,SINGH C.Bidding and Coopera-tion Strategies for Electricity Buyers in Power Markets[J].IEEE Systems Journal,2016,10(2):422-433.
[16] CUI Y,ZHENG P,HUI X X,et al.Low-carbon Economic Dispatch Considering the Integrated Flexible Operation Mode of Carbon Capture Power Plant[J].Power System Technology,2021,45(5):1877-1886.
[17] DING Q Y,WANG X L,ZHU J M,et al.Information Security Framework Based on Blockchain for Cyber-physics System[J].Computer Science,2018,45(2):32-39.
[18] HE L,LU Z,ZHANG J,et al.Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas[J].Applied Energy,2018(224):357-370.
[1] 王子凯, 朱健, 张伯钧, 胡凯.
区块链与智能合约并行方法研究与实现
Research and Implementation of Parallel Method in Blockchain and Smart Contract
计算机科学, 2022, 49(9): 312-317. https://doi.org/10.11896/jsjkx.210800102
[2] 李博, 向海昀, 张宇翔, 廖浩德.
面向食品溯源场景的PBFT优化算法应用研究
Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios
计算机科学, 2022, 49(6A): 723-728. https://doi.org/10.11896/jsjkx.210800018
[3] 傅丽玉, 陆歌皓, 吴义明, 罗娅玲.
区块链技术的研究及其发展综述
Overview of Research and Development of Blockchain Technology
计算机科学, 2022, 49(6A): 447-461. https://doi.org/10.11896/jsjkx.210600214
[4] 高健博, 张家硕, 李青山, 陈钟.
RegLang:一种面向监管的智能合约编程语言
RegLang:A Smart Contract Programming Language for Regulation
计算机科学, 2022, 49(6A): 462-468. https://doi.org/10.11896/jsjkx.210700016
[5] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
[6] 王思明, 谭北海, 余荣.
面向6G可信可靠智能的区块链分片与激励机制
Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence
计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004
[7] 孙浩, 毛瀚宇, 张岩峰, 于戈, 徐石成, 何光宇.
区块链跨链技术发展及应用
Development and Application of Blockchain Cross-chain Technology
计算机科学, 2022, 49(5): 287-295. https://doi.org/10.11896/jsjkx.210800132
[8] 阳真, 黄松, 郑长友.
基于区块链与改进CP-ABE的众测知识产权保护技术研究
Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE
计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075
[9] 任畅, 赵洪, 蒋华.
一种量子安全拜占庭容错共识机制
Quantum Secured-Byzantine Fault Tolerance Blockchain Consensus Mechanism
计算机科学, 2022, 49(5): 333-340. https://doi.org/10.11896/jsjkx.210400154
[10] 冯了了, 丁滟, 刘坤林, 马科林, 常俊胜.
区块链BFT共识算法研究进展
Research Advance on BFT Consensus Algorithms
计算机科学, 2022, 49(4): 329-339. https://doi.org/10.11896/jsjkx.210700011
[11] 王鑫, 周泽宝, 余芸, 陈禹旭, 任昊文, 蒋一波, 孙凌云.
一种面向电能量数据的联邦学习可靠性激励机制
Reliable Incentive Mechanism for Federated Learning of Electric Metering Data
计算机科学, 2022, 49(3): 31-38. https://doi.org/10.11896/jsjkx.210700195
[12] 张潆藜, 马佳利, 刘子昂, 刘新, 周睿.
以太坊Solidity智能合约漏洞检测方法综述
Overview of Vulnerability Detection Methods for Ethereum Solidity Smart Contracts
计算机科学, 2022, 49(3): 52-61. https://doi.org/10.11896/jsjkx.210700004
[13] 杨昕宇, 彭长根, 杨辉, 丁红发.
基于演化博弈的理性拜占庭容错共识算法
Rational PBFT Consensus Algorithm with Evolutionary Game
计算机科学, 2022, 49(3): 360-370. https://doi.org/10.11896/jsjkx.210900110
[14] 范家幸, 王志伟.
基于门限环签名的分级匿名表决方案
Hierarchical Anonymous Voting Scheme Based on Threshold Ring Signature
计算机科学, 2022, 49(1): 321-327. https://doi.org/10.11896/jsjkx.201000032
[15] 温啸林, 李长林, 张馨艺, 刘尚松, 朱敏.
基于DPoS共识机制的区块链社区演化的可视分析方法
Visual Analysis Method of Blockchain Community Evolution Based on DPoS Consensus Mechanism
计算机科学, 2022, 49(1): 328-335. https://doi.org/10.11896/jsjkx.201200118
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!