计算机科学 ›› 2020, Vol. 47 ›› Issue (11): 304-309.doi: 10.11896/jsjkx.200600167

• 计算机网络 • 上一篇    下一篇

基于遗传算法的声场重构测量优化方法

许锋1, 孙洁2,3, 刘世杰2,3   

  1. 1 中国刑事警察学院公安信息技术与情报学院 沈阳 110035
    2 中国科学院沈阳自动化研究所机器人学国家重点实验室 沈阳 110016
    3 中国科学院机器人与智能制造创新研究院 沈阳 110169
  • 收稿日期:2020-06-28 修回日期:2020-08-25 出版日期:2020-11-15 发布日期:2020-11-05
  • 通讯作者: 许锋(xufeng_ccpc@hotmail.com)
  • 基金资助:
    国家科技重大专项(2017YFC0821004);公安部技术研究计划(2016JSYJC59)

Sampling Optimization Method for Acoustic Field Reconstruction Based on Genetic Algorithm

XU Feng1, SUN Jie2,3, LIU Shi-jie2,3   

  1. 1 College of Public Security Information Technology and Information,Criminal Investigation Police University of China,Shenyang 110035,China
    2 State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China
    3 Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China
  • Received:2020-06-28 Revised:2020-08-25 Online:2020-11-15 Published:2020-11-05
  • About author:XU Feng,born in 1977,Ph.D,associate professor. His main research interests include robot,virtual reality and audio-visual data.
  • Supported by:
    This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2017YFC0821004) and Technical Research Plan of the Ministry of Public Security (2016JSYJC59).

摘要: 海洋声信道参数空间场能够刻画水声信号在海洋中传播的空间分布规律,对水声通信位置选取、水下目标探测及隐身等具有重要指导意义。针对应用压缩感知重构声场时水下机器人测量路径的优化问题,在结合声场特点、压缩感知和水下机器人的运动特点的基础上,提出了一种基于遗传算法的测量优化方法,以提高压缩感知方法的重构精度。首先分析了声场重构中压缩感知测量矩阵的结构,然后结合水下机器人的运动能力限制,定义了遗传算法中适用于水下机器人测量的基因表达、生成方式以及适应度函数。仿真实验中以高斯随机点的旅行商问题和梳状测量路径为对照,结果表明所提方法能够明显提高声场重构的精度,且对不同采样率及不同分布声场的重构都能够保持更高的精度。

关键词: 测量优化, 声场重构, 水下机器人, 压缩感知, 遗传算法

Abstract: The spatial field of ocean acoustic channel parameters can describe the spatial distribution law of underwater acoustic signal propagation in the ocean,which has important guiding significance for underwater acoustic communication location selection,underwater target detection and stealth.For the problem of sampling trajectory optimization in the application of compressive sensing (CS) methods on the acoustic field reconstruction,a sampling optimization method based on a genetic algorithm (GA) is proposed to improve the CS reconstruction accuracy in this paper combining the characteristics of sound field,compressed sensing and the motion characteristics of underwater robot.Firstly,the structure of the CS sampling matrix is analyzed.Then,combining with the kinematic constraint of underwater vehicles,the gene expression and generation method as well as the GA fitness function are defined to support the sampling of underwater vehicles.In simulations,the traveling salesman problem (TSP)-based path from Gaussian random sampling points and the lawnmower sampling path are used for comparison.The results demonstrate that the proposed GA-based sampling method can significantly improve the reconstruction accuracy of acoustic fields.The influences of different sampling rates and different acoustic filed distributions are discussed,which further illustrates the superior performance of the proposed method.

Key words: Acoustic field reconstruction, Compressive sensing, Genetic algorithm (GA), Sampling optimization, Underwater vehicle

中图分类号: 

  • TP249
[1] SUN J,YU J,ZHANG A,et al.Underwater acoustic intensity field reconstruction by kriged compressive sensing[C]//Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems.ACM,2018-Shenzhen:1-5.
[2] CAO H.Study on Compressed sensing observation method of underwater target active acoustic signal[D].Hangzhou:Hangzhou Dianzi University,2019.
[3] CANDÈS E J,ROMBERG J,TAO T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
[4] LIU H Y.Research on Hyperspectral image reconstruction and Super-Resolution imaging technique based on compressive sensing[D].Xi'an:Xidian University,2014.
[5] CONG S,ZHANG J J.Compressive sensing theory,optimization algorithm and application in system state reconstruction[J].Information and Control,2017,46(3):267-274.
[6] LI P,YANG Y X.Compressed sensing based acoustic data compression and reconstruction technology[J].Technical Acoustics,2014,33(1):14-20.
[7] LI J,LIN Q H,YANG X T,et al.Method of underwater target passive ranging based on compressed sensing[J].Information and Control,2019,48(1):9-15.
[8] WANG Q,ZHANG N W,ZHANG J C,et al.Compressedsensing for data collection in wireless sensor network[J].Chinese Journal of Sensors and Actuators,2014,27(11):1562-1567.
[9] ZHANG B,LIU Y L,WANG K,et al.Compressive data gath-ering method based on probabilistic sparse random matrices[J].Journal of Electronics & Information Technology,2013,36(4):834-839.
[10] BINGHAM B,KRAUS N,HOWE B,et al.Passive and active acoustics using an autonomous wave glider[J].Journal of field robotics,2012,29(6):911-923.
[11] YAN S X,LI Y P,FENG X S.An AUV Adaptive sampling method based on gaussian process regression[J].ROBOT,2019,41(2):232-241.
[12] LIU S,SUN J,YU J,et al.Sampling optimization for networked underwater gliders[C]//OCEANS 2016-Shanghai.IEEE,2016:1-4.
[13] CHEN B,PANDEY P,POMPILI D.A distributed adaptivesampling soluting using autonomous underwater vehicles[C]//Proceedings of the Seventh ACM International Conference on Underwater Networks and Systems.ACM,2012:29.
[14] HUMMEL R,PODURI S,HOVER F,et al.Mission design for compressive sensing with mobile robots[C]//2011 IEEE International Conference on Robotics and Automation.IEEE,2011:2362-2367.
[15] HOVER F S,HUMMEL R,MITRA U,et al.One-step-ahead kinematic compressive sensing[C]//2011 IEEE GLOBECOM Workshops (GC Wkshps).IEEE,2011:1314-1319.
[16] CANDÈS E J.The restricted isometry property and its implications for compressed sensing[J].Comptes rendus mathematique,2008,346(9/10):589-592.
[17] CANDÈS E J,ROMBERG J K,TAO T.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics:A Journal Issued by the Courant Institute of Mathematical Sciences,2006,59(8):1207-1223.
[18] CANDÈS E,ROMBERG J.Sparsity and incoherence in com-pressive sampling[J].Inverse problems,2007,23(3):969-985.
[19] MIAO Z H,SUN X D,SHAO C.An Adaptive Genetic Algorithm with Parallel Mutation and Its Performance Evaluation[J].Information and control,2016,45(2):142-150.
[20] FROLOV S,GARAU B,& BELLINGHAM J.Can we do better than the grid survey:Optimal synoptic surveys in presence of variable uncertainty and decorrelation scales[J].Journal of Geophysical Research:Oceans,2014,119(8):5071-5090.
[21] CANDÈS E J,WAKIN M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[22] MILLER P A,FARRELL J A,ZHAO Y,et al.Autonomousunderwater vehicle navigation[J].IEEE Journal of Oceanic Engineering,2010,35(3):663-678.
[1] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[2] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[3] 吴善杰, 王新.
基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法
Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks
计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110
[4] 程宇, 刘铁军, 唐元贵, 王健, 姜志斌, 祁胜.
基于UNITY3D的水下机器人视景仿真方法
Underwater Robert Visual Simulation Based on UNITY3D
计算机科学, 2021, 48(6A): 281-284. https://doi.org/10.11896/jsjkx.200700131
[5] 王金恒, 单志龙, 谭汉松, 王煜林.
基于遗传优化PNN神经网络的网络安全态势评估
Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network
计算机科学, 2021, 48(6): 338-342. https://doi.org/10.11896/jsjkx.201200239
[6] 郑增乾, 王锟, 赵涛, 蒋维, 孟利民.
带宽和时延受限的流媒体服务器集群负载均衡机制
Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster
计算机科学, 2021, 48(6): 261-267. https://doi.org/10.11896/jsjkx.200400131
[7] 左剑凯, 吴杰宏, 陈嘉彤, 刘泽源, 李忠智.
异构无人机编队防御及评估策略研究
Study on Heterogeneous UAV Formation Defense and Evaluation Strategy
计算机科学, 2021, 48(2): 55-63. https://doi.org/10.11896/jsjkx.191100053
[8] 姚泽玮, 林嘉雯, 胡俊钦, 陈星.
基于PSO-GA的多边缘负载均衡方法
PSO-GA Based Approach to Multi-edge Load Balancing
计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191
[9] 高帅, 夏良斌, 盛亮, 杜宏亮, 袁媛, 韩和同.
基于投影圆度和遗传算法的空间圆柱面拟合方法
Spatial Cylinder Fitting Based on Projection Roundness and Genetic Algorithm
计算机科学, 2021, 48(11A): 166-169. https://doi.org/10.11896/jsjkx.201100057
[10] 高基旭, 王珺.
一种基于遗传算法的多边缘协同计算卸载方案
Multi-edge Collaborative Computing Unloading Scheme Based on Genetic Algorithm
计算机科学, 2021, 48(1): 72-80. https://doi.org/10.11896/jsjkx.200800088
[11] 吉顺慧, 张鹏程.
基于支配关系的数据流测试用例生成方法
Test Case Generation Approach for Data Flow Based on Dominance Relations
计算机科学, 2020, 47(9): 40-46. https://doi.org/10.11896/jsjkx.200700021
[12] 董明刚, 黄宇扬, 敬超.
基于遗传实例和特征选择的K近邻训练集优化方法
K-Nearest Neighbor Classification Training Set Optimization Method Based on Genetic Instance and Feature Selection
计算机科学, 2020, 47(8): 178-184. https://doi.org/10.11896/jsjkx.190700089
[13] 梁正友, 何景琳, 孙宇.
一种用于微表情自动识别的三维卷积神经网络进化方法
Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition
计算机科学, 2020, 47(8): 227-232. https://doi.org/10.11896/jsjkx.190700009
[14] 杨德成, 李凤岐, 王祎, 王胜法, 殷慧殊.
智能3D打印路径规划算法
Intelligent 3D Printing Path Planning Algorithm
计算机科学, 2020, 47(8): 267-271. https://doi.org/10.11896/jsjkx.190700184
[15] 包振山, 郭俊南, 谢源, 张文博.
基于LSTM-GA的股票价格涨跌预测模型
Model for Stock Price Trend Prediction Based on LSTM and GA
计算机科学, 2020, 47(6A): 467-473. https://doi.org/10.11896/JsJkx.190900128
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!