计算机科学 ›› 2022, Vol. 49 ›› Issue (12): 362-367.doi: 10.11896/jsjkx.211100282

• 信息安全 • 上一篇    下一篇

基于动态分组的重要性共识优化算法

王冬1,2, 肖冰冰1,2, 金晨光1, 李政1,2, 李笑若1, 祝丙南1   

  1. 1 河南大学软件学院 河南 开封475001
    2 河南省智能网络理论与关键技术国际联合实验室 河南 开封475001
  • 收稿日期:2021-11-29 修回日期:2022-05-27 发布日期:2022-12-14
  • 通讯作者: 肖冰冰(xiaobingkf@qq.com)
  • 作者简介:(Juliawdd@qq.com)
  • 基金资助:
    国家自然科学基金面上项目(61872125);河南省自然科学基金(192102210271);基于鲲鹏平台的国产操作系统研究与示范(201300210400),2020年度河南省重大科技专项

Consensus Optimization Algorithm for Proof of Importance Based on Dynamic Grouping

WANG Dong1,2, XIAO Bing-bing1,2, JIN Chen-guang1, LI Zheng1,2, LI Xiao-ruo1, ZHU Bing-nan1   

  1. 1 School of Software,Henan University,Kaifeng,Henan 475001,China
    2 Henan International Joint Laboratory of Intelligent Network Theory and Key Technology,Kaifeng,Henan 475001,China
  • Received:2021-11-29 Revised:2022-05-27 Published:2022-12-14
  • About author:WANG Dong,born in 1977,Ph.D,professor,is a member of China Computer Federation.Her main research interests include blockchain and its applications.XIAO Bing-bing,born in 1997,postgraduate.Her main research interests include blockchain consensus algorithms and applications.
  • Supported by:
    National Natural Science Foundation of China(61872125),Henan Natural Science Foundation(192102210271), Research and Demonstration of Domestic Operating System Based on Kunpeng Platform(201300210400) and Major Science and Technology Special Projects in Henan Province in 2020.

摘要: 权益证明共识算法(PoS)虽然具有不需要花费算力的优势,然而由于权益越高的节点获得记账权的可能性越大,因此记账节点具有很强的确定性且容易富者愈富,一旦权益最高的节点无法正常记账出块,其余节点仍要重新竞争记账权,此时系统停滞的概率急剧增大。针对这两个缺陷,提出了一种基于动态分组的重要性共识优化算法(DPoI)。首先,算法引入重要性评估方案,依据节点活跃度、交易占比、寻找随机数的时间和信誉度计算每轮中节点的重要性分数iValue;然后,利用斐波那契数列将iValue相近的节点动态分组,组内借鉴DPoS投票策略排名充当备选节点,形成灾备方案,从而有效避免系统停滞;最后,设计了二进制指数退避算法来快速剔除系统中的恶意节点,从而有效增强了区块链系统的安全性和稳定性。实验结果表明,DPoI出块的速度约为PoI的6倍,大大加快了出块速度。当恶意节点占比达到70%时,二进制指数退避算法仍能有效剔除恶意节点,系统的可靠性得到了充分保障。

关键词: 区块链, 动态分组, 重要性证明, 信誉度, DPoS

Abstract: Proof of stake consensus algorithm(PoS) has the advantage of not requiring arithmetic power.However,the higher the equity of the node,the higher the probability of obtaining the bookkeeping rights,resulting in a very deterministic bookkeeping node and makes it easy for the rich to get richer.Once the node with the highest equity fails to book the block properly,the rest of the nodes still have to compete for the bookkeeping rights again.The probability of system stagnation increases dramatically at this point.To address these two shortcomings,a consensus optimization algorithm for proof of importance based on dynamic grouping(DPoI) is proposed.The algorithm introduces an importance assessment scheme,which calculates the importance score iValue of nodes in each round based on node activity,transaction share,time to find random numbers and reputation.Then,the nodes with similar iValue are dynamically grouped using Fibonacci series.Within the group,the DPoS voting strategy ranking is borrowed to act as an alternative node,thus forming a disaster recovery scheme to effectively avoid system stagnation.Finally,a binary exponential backoff algorithm is designed to quickly remove malicious nodes from the system,thus effectively enhancing the security and stability of the blockchain system.Experimental results show that the speed of DPoI block-out is about 6 times faster than PoI,which significantly improves the block-out speed.When the percentage of malicious nodes reaches 70%,the binaryexponential backoff algorithm can still effectively reject malicious nodes,and the reliability of the system is fully guaranteed.

Key words: Blockchain, Dynamic grouping, Proof of Importance, Credit, DPoS

中图分类号: 

  • TP309
[1]YUAN Y,WANG F Y.Blockchain:thestate of the art and future trends[J].Acta Automatica Sinica,2016,42(4):481-494.
[2]XIE P,SHI W G.Digital cryptocurrency research:a literature review[J].Financial Research,2015,415(1):1-15.
[3]YUAN Y,NI X C,ZENG S,et al.The development status and outlook of blockchain consensus algorithm[J].Journal of Automation,2018,44(11):2011-2022.
[4]XU F,YANG G W,JU D P.Design of Distributed Storage System on Peer-to-Peer Structure based on Peer-to-Peer [J].Journal of Software,2004,15(2):268-277.
[5]NAKAMOTO S.Bitcoin:A Peer-to-Peer Electronic Cash System[EB/OL].https://blog.csdn.net/yingkee/article/details/53888910.
[6]CHO H.ASIC-Resistance of Multi-Hash Proof-of-Work Mechanisms for Blockchain Consensus Protocols[J].IEEE Access,2018,6:66210-66222.
[7]VUKOLI M.The Quest for Scalable Blockchain Fabric:Proof-of-Work vs.BFT Replication[C]//International Workshop on Open Problems in Network Security.Springer International Publishing,2016.
[8]WANG J.Research on resource management mechanisms in P2P systems [D].Hefei:University of Science and Technology of China,2007.
[9]LI D Q.Denial of Service Attacks [M].Beijing:Electronic Industry Press,2007.
[10]July 2015 flood attack[EB/OL].Bitcoin Wiki.https://en.bitcoin.it/wiki/July_2015_flood_attack.
[11]LI W,ANDREINA S,BOHLI J M,et al.Securing Proof-of-Stake Blockchain Protocols[C]//European Symposium on Research in Computer Security International Workshop on Data Privacy Management Cryptocurrencies and BlockchainTechno-logy.2017.
[12]HANKE T.Asicboost-a speedup for bitcoin mining[J].arXiv:1604.00575,2016.
[13]HOU Y N.It Will Cost You Nothing to ‘Kill’ a Proof-of-Stake Crypto-Currency[J].Social Science Electronic Publishing,2014,34(2):1038-1044.
[14]POELSTRA A.Distributed consensus from proof of stake is impossible[EB/OL].https://download.wpsoftware.net/bitcoin/pos.pdf.
[15]BUTERIN V.On stake[EB/OL].https://blog.ethereum.org/2014/07/05/stake/.
[16]BEIKVERDI A.NEM technical reference[EB/OL].https://nem.io/wp-content/themes/nem/files/NEM_techRef.pdf.
[17]FANG W,ZHANG W,PAN T,et al.Cyber Security in Blockchain:Threats and Countermeasures[J].Journal of Cyber Secu-rity,2018,3(2):87-104.
[18]ZHOUC Z.The Fibonacci-Lucas sequence and its applications [M].Changsha:Hunan Science and Technology Press,1993.
[19]YANG J,PAUDEL A,GOOI H B,et al.A Proof-of-Stake Public Blockchain-Based Pricing Scheme for Peer-to-Peer Energy Trading[J].Applied Energy,2021,298:117154.
[20]LARIMER D.Delegated Proof-of-Stake(DPOS)[EB/OL].https://bitshares.org/technology/delegated-proof-of-stake-con-sensus/2014.
[1] 王子凯, 朱健, 张伯钧, 胡凯.
区块链与智能合约并行方法研究与实现
Research and Implementation of Parallel Method in Blockchain and Smart Contract
计算机科学, 2022, 49(9): 312-317. https://doi.org/10.11896/jsjkx.210800102
[2] 傅丽玉, 陆歌皓, 吴义明, 罗娅玲.
区块链技术的研究及其发展综述
Overview of Research and Development of Blockchain Technology
计算机科学, 2022, 49(6A): 447-461. https://doi.org/10.11896/jsjkx.210600214
[3] 高健博, 张家硕, 李青山, 陈钟.
RegLang:一种面向监管的智能合约编程语言
RegLang:A Smart Contract Programming Language for Regulation
计算机科学, 2022, 49(6A): 462-468. https://doi.org/10.11896/jsjkx.210700016
[4] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
[5] 李博, 向海昀, 张宇翔, 廖浩德.
面向食品溯源场景的PBFT优化算法应用研究
Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios
计算机科学, 2022, 49(6A): 723-728. https://doi.org/10.11896/jsjkx.210800018
[6] 周航, 姜河, 赵琰, 解相朋.
适用于各单元共识交易的电力区块链系统优化调度研究
Study on Optimal Scheduling of Power Blockchain System for Consensus Transaction ofEach Unit
计算机科学, 2022, 49(6A): 771-776. https://doi.org/10.11896/jsjkx.210600241
[7] 王思明, 谭北海, 余荣.
面向6G可信可靠智能的区块链分片与激励机制
Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence
计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004
[8] 孙浩, 毛瀚宇, 张岩峰, 于戈, 徐石成, 何光宇.
区块链跨链技术发展及应用
Development and Application of Blockchain Cross-chain Technology
计算机科学, 2022, 49(5): 287-295. https://doi.org/10.11896/jsjkx.210800132
[9] 阳真, 黄松, 郑长友.
基于区块链与改进CP-ABE的众测知识产权保护技术研究
Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE
计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075
[10] 任畅, 赵洪, 蒋华.
一种量子安全拜占庭容错共识机制
Quantum Secured-Byzantine Fault Tolerance Blockchain Consensus Mechanism
计算机科学, 2022, 49(5): 333-340. https://doi.org/10.11896/jsjkx.210400154
[11] 冯了了, 丁滟, 刘坤林, 马科林, 常俊胜.
区块链BFT共识算法研究进展
Research Advance on BFT Consensus Algorithms
计算机科学, 2022, 49(4): 329-339. https://doi.org/10.11896/jsjkx.210700011
[12] 王鑫, 周泽宝, 余芸, 陈禹旭, 任昊文, 蒋一波, 孙凌云.
一种面向电能量数据的联邦学习可靠性激励机制
Reliable Incentive Mechanism for Federated Learning of Electric Metering Data
计算机科学, 2022, 49(3): 31-38. https://doi.org/10.11896/jsjkx.210700195
[13] 张潆藜, 马佳利, 刘子昂, 刘新, 周睿.
以太坊Solidity智能合约漏洞检测方法综述
Overview of Vulnerability Detection Methods for Ethereum Solidity Smart Contracts
计算机科学, 2022, 49(3): 52-61. https://doi.org/10.11896/jsjkx.210700004
[14] 杨昕宇, 彭长根, 杨辉, 丁红发.
基于演化博弈的理性拜占庭容错共识算法
Rational PBFT Consensus Algorithm with Evolutionary Game
计算机科学, 2022, 49(3): 360-370. https://doi.org/10.11896/jsjkx.210900110
[15] 张伯钧, 李洁, 胡凯, 曾俊豪.
基于区块链的分布式加密投票系统
Distributed Encrypted Voting System Based on Blockchain
计算机科学, 2022, 49(11A): 211000212-6. https://doi.org/10.11896/jsjkx.211000212
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!