Computer Science ›› 2020, Vol. 47 ›› Issue (2): 169-174.doi: 10.11896/jsjkx.190600154
• Artificial Intelligence • Previous Articles Next Articles
SUN Hao,CHEN Chun-lin,LIU Qiong,ZHAO Jia-bao
CLC Number:
[1]SUTTON R S,BARTO A G.Introduction to reinforcement learning[M].Cambridge:MIT Press,1998. [2]BELLEMARE M G,DABNEY W,MUNOS R.A distributionalperspective on reinforcement learning[C]∥Proceedings of the 34th International Conference on Machine Learning.JMLR.org,2017:449-458. [3]CHIS S.Adaptive traffic signal control using fuzzy logic[C]∥Proceedings of the Intelligent Vehicles92 Symposium.IEEE,1992:98-107. [4]PANDIT K,GHOSAL D,ZHANG H M,et al.Adaptive traffic signal control with vehicular ad hoc networks[J].IEEE Transactions on Vehicular Technology,2013,62(4):1459-1471. [5]LIN W H,WANG C.An enhanced 0-1 mixed-integer LP formulation for traffic signal control[J].IEEE Transactions on Intelligent transportation systems,2004,5(4):238-245. [6]PRASHANTH L A,BHATNAGAR S.Reinforcement learning with function approximation for traffic signal control[J].IEEE Transactions on Intelligent Transportation Systems,2010,12(2):412-421. [7]GIRIANNA M,BENEKOHAL R F.Using genetic algorithms to design signal coordination for oversaturated networks[J].Journal of Intelligent Transportation Systems,2004,8(2):117-129. [8]SANCHEZ-MEDINA J J,GALAN-MORENO M J,RUBIO-ROYO E.Traffic signal optimization in “La Almozara” district in Saragossa under congestion conditions,using genetic algorithms,traffic microsimulation,and cluster computing[J].IEEE Transactions on Intelligent Transportation Systems,2009,11(1):132-141. [9]YU X H,RECKER W.Stochastic adaptive control model for traffic signal systems[J].Transportation Research Part C:Emerging Technologies,2006,14(4):263-282. [10]GOKULAN B P,SRINIVASAN D.Distributed geometric fuzzy multi agent urban traffic signal control[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(3):714-727. [11]BOWLING M.Multi agent learning in the presence of agents with limitations[R].Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science,2003. [12]PRASHANTH L,BHATNAGAR S.Threshold tuning using stochastic optimization for graded signal control[J].IEEE Transactions on Vehicular Technology,2012,61(9):3865-3880. [13]LIU W,QIN G,HE Y,et al.Distributed cooperative reinforce-ment learning-based traffic signal control that integrates v2x networks’ dynamic clustering[J].IEEE Transactions onVehi-cular Technology,2017,66(10):8667-8681. [14]GENDERS W,RAZAVI S.Using a deep reinforcement learning agent for traffic signal control[J].arXiv:1611.01142. [15]El-TANTAWY S,ABDULHAI B,ABDELGAWAD H.Multi agent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC):methodology and large-scale application on downtown Toronto[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(3):1140-1150. [16]WIERING M A.Multi-agent reinforcement learning for traffic light control[C]∥Machine Learning:Proceedings of the Seventeenth International Conference (ICML’2000).2000:1151-1158. [17]WIERING M,VREEKEN J,VAN VEENEN J,et al.Simulation and optimization of traffic in a city[C]∥IEEE Intelligent Vehicles Symposium,2004.IEEE,2004:453-458. [18]MARSETIC R,SEMROV D,ZURA M.Road artery traffic light optimization with use of the reinforcement learning[J].PROMET-Traffic & Transportation,2014,26(2):101-108. [19]PUTERMAN M L.Markov Decision Processes:Discrete Sto-chastic Dynamic Programming[M].John Wiley & Sons,2014. [20]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Human-level control through deep reinforcement learning[J].Nature,2015,518(7540):529-533. [21]VAN HASSELT H,GUEZ A,SILVER D.Deep Reinforcement Learning with Double Q-Learning[C]∥Association for the Advance of Artificial Intelligence.2016:2094-2100. [22]SCHAUL T,QUAN J,ANTONOGLOU I,et al.Prioritized experience replay[C]∥Proceedings of the 4th International Con-ference on Learning Representations.San Juan,Puerto Rico,2016:322-355. |
[1] | YU Bin, LI Xue-hua, PAN Chun-yu, LI Na. Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning [J]. Computer Science, 2022, 49(7): 248-253. |
[2] | LI Meng-fei, MAO Ying-chi, TU Zi-jian, WANG Xuan, XU Shu-fang. Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient [J]. Computer Science, 2022, 49(7): 271-279. |
[3] | XIE Wan-cheng, LI Bin, DAI Yue-yue. PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing [J]. Computer Science, 2022, 49(6): 3-11. |
[4] | HONG Zhi-li, LAI Jun, CAO Lei, CHEN Xi-liang, XU Zhi-xiong. Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration [J]. Computer Science, 2022, 49(6): 149-157. |
[5] | LI Peng, YI Xiu-wen, QI De-kang, DUAN Zhe-wen, LI Tian-rui. Heating Strategy Optimization Method Based on Deep Learning [J]. Computer Science, 2022, 49(4): 263-268. |
[6] | OUYANG Zhuo, ZHOU Si-yuan, LYU Yong, TAN Guo-ping, ZHANG Yue, XIANG Liang-liang. DRL-based Vehicle Control Strategy for Signal-free Intersections [J]. Computer Science, 2022, 49(3): 46-51. |
[7] | DAI Shan-shan, LIU Quan. Action Constrained Deep Reinforcement Learning Based Safe Automatic Driving Method [J]. Computer Science, 2021, 48(9): 235-243. |
[8] | CHENG Zhao-wei, SHEN Hang, WANG Yue, WANG Min, BAI Guang-wei. Deep Reinforcement Learning Based UAV Assisted SVC Video Multicast [J]. Computer Science, 2021, 48(9): 271-277. |
[9] | LIANG Jun-bin, ZHANG Hai-han, JIANG Chan, WANG Tian-shu. Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing [J]. Computer Science, 2021, 48(7): 316-323. |
[10] | WANG Ying-kai, WANG Qing-shan. Reinforcement Learning Based Energy Allocation Strategy for Multi-access Wireless Communications with Energy Harvesting [J]. Computer Science, 2021, 48(7): 333-339. |
[11] | ZHOU Shi-cheng, LIU Jing-ju, ZHONG Xiao-feng, LU Can-ju. Intelligent Penetration Testing Path Discovery Based on Deep Reinforcement Learning [J]. Computer Science, 2021, 48(7): 40-46. |
[12] | LI Bei-bei, SONG Jia-rui, DU Qing-yun, HE Jun-jiang. DRL-IDS:Deep Reinforcement Learning Based Intrusion Detection System for Industrial Internet of Things [J]. Computer Science, 2021, 48(7): 47-54. |
[13] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
[14] | NIU Kang-li, CHEN Yu-zhang, ZHANG Gong-ping, TAN Qian-cheng, WANG Yi-chong, LUO Mei-qi. Vehicle Flow Measuring of UVA Based on Deep Learning [J]. Computer Science, 2021, 48(6A): 275-280. |
[15] | FAN Yan-fang, YUAN Shuang, CAI Ying, CHEN Ruo-yu. Deep Reinforcement Learning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing [J]. Computer Science, 2021, 48(5): 270-276. |
|