Computer Science ›› 2022, Vol. 49 ›› Issue (6): 149-157.doi: 10.11896/jsjkx.210600226
• Database & Big Data & Data Science • Previous Articles Next Articles
HONG Zhi-li, LAI Jun, CAO Lei, CHEN Xi-liang, XU Zhi-xiong
CLC Number:
[1] JACOBI J A,BENSON E A,LINDEN G D.Recommendationsystem:U.S.Patent 7,908,183[P].[2011-3-15].https://patents.glgoo.top/patent/US7908183B2/en. [2] SCHAFER J B,FRANKOWSKI D,HERLOCKER J,et al.Collaborative filtering recommender systems[M]//The Adaptive Web.Berlin:Springer Press,2007:291-324. [3] DORSCH M,QIU Y,SOLER D,et al.PK1/EG-VEGF induces monocyte differentiation and activation[J].Journal of Leukocyte Biology,2005,78(2):426-434. [4] QI H M,LIU Q,DAI D X.Personalized Friend Recommendation based on Interest Topics[J].Computer Engineering and Science,2018,40(2):348-353. [5] SUTTON R S,BARTO A G.Reinforcement learning:An introduction[M].USA:MIT Press,2018. [6] MOHRI M,ROSTAMIZADEH A,TALWALKAR A.Foundations of machine learning[M].USA:MIT Press,2018. [7] JORDAN M I,MITCHELL T M.Machine learning:Trends,perspectives,and prospects[J].Science,2015,349(6245):255-260. [8] MESSNER W,HOROWITZ R,KAO W W,et al.A new adaptive learning rule[C]//Proceedings of IEEE International Conference on Robotics and Automation.New York:IEEE Press,1990:1522-1527. [9] KAELBLING L P,LITTMAN M L,MOORE A W.Reinforcement learning:A survey[J].Journal of Artificial Intelligence Research,1996,4(1):237-285. [10] ROJANAVASU P,SRINIL P,PINNGERN O.New Recommendation System Using Reinforcement Learning[J].International Journal of the Computer,the Internet and Management,2005,13(3):23. [11] ZHENG G,ZHANG F,ZHENG Z,et al.DRN:A deep reinforcement learning framework for news recommendation[C]//27th International World Wide Web(WWW 2018).Association for Computing Machinery,2018:167-176. [12] LEI Y,WANG Z,LI W,et al.Social attentive deep q-network for recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:1189-1192. [13] ZHAO Z,CHEN X.Deep Reinforcement Learning based Reco-mmend System using stratified sampling[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2018. [14] ZINKEVICH M,JOHANSON M,BOWLING M,et al.Regret minimization in games with incomplete information[J].Ad-vances in Neural Information Processing Systems,2007,20(14):1729-1736. [15] YUAN F,HE X,KARATZOGLOU A,et al.Parameter-efficienttransfer from sequential behaviors for user modeling and recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1469-1478. [16] BAGHER R C,HASSANPOUR H,MASHAYEKHI H.Usertrends modeling for a content-based recommender system[J].Expert Systems with Applications,2017,87:209-219. [17] HUANG Z,SHAN G,CHENG J,et al.TRec:An efficientrecommendation system for hunting passengers with deep neural networks[J].Neural Computing and Applications,2019,31(1):209-222. [18] HE X,HE Z,SONG J,et al.Nais:Neural attentive item simila-rity model for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(12):2354-2366. [19] PAZZANI M J,BILLSUS D.Content-based recommendationsystems[M]//The Adaptive Web.Berlin:Springer Press,2007:325-341. [20] BREESE J S,HECKERMAN D,KADIE C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[J].Uncertainty in Artificial Intelligence,2013,98(7):43-52. [21] LIN W,ALVAREZ S A,RUIZ C.Efficient Adaptive-Support Association Rule Mining for Recommender Systems[J].Data Mining & Knowledge Discovery,2002,6(1):83-105. [22] YIN Y,FENG D,SHI S.A Utility based personalized article recommendation method[J].Journal of Computer Science,2017,40(12):2797-2811. [23] VARTAK M,MADDEN S.CHIC:a combination-based recommendation system[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data.2013:981-984. [24] FU M,QU H,YI Z,et al.A novel deep learning-based collaborative filtering model for recommendation system[J].IEEE transactions on cybernetics,2018,49(3):1084-1096. [25] LI C,QUAN C,PENG L,et al.A capsule network for recommendation and explaining what you like and dislike[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:275-284. [26] GABRIEL DE SOUZA P M,JANNACH D,DA CUNHA A M.Contextual hybrid session-based news recommendation with recurrent neural networks[J].IEEE Access,2019,7:169185-169203. [27] CHEN X,LI S,LI H,et al.Generative adversarial user model for reinforcement learning based recommendation system[C]//International Conference on Machine Learning.PMLR,2019:1052-1061. [28] XIAO Y,XIAO L,LU X Z,et al.Deep Reinforcement Learning-Based User Profile Perturbation for Privacy Aware Recommendation[J].IEEE Internet of Things Journal,2020,8(6):4560-4568. [29] ZHANG Y Y,SU X Y,LIU Y.A Novel Movie Recommenda-tion System Based on Deep Reinforcement Learning with Prio-ritized Experience Replay[C]//2019 IEEE 19th International Conference on Communication Technology (ICCT).New York:IEEE,2019:1496-1500. [30] WATKINS C J C H,DAYAN P.Q-learning[J].Machine lear-ning,1992,8(3/4):279-292. [31] PETERS J,SCHAAL S.Natural Actor-Critic[J].Neurocompu-ting,2008,71(7/8/9):1180-1190. [32] WANG Z,SCHAUL T,HESSEL M,et al.Dueling network architectures for deep reinforcement learning[C]//International Conference on Machine Learning.PMLR,2016:1995-2003. [33] FAN J,WANG Z,XIE Y,et al.A theoretical analysis of deep Q-learning[C]//Learning for Dynamics and Control.PMLR,2020:486-489. [34] XIANG L.Recommended system practice[M].Beijing:Posts & Telecom Press.2012. [35] HERLOCKER J L,KONSTAN J A,TERVEEN L G,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions onInformation Systems(TOIS),2004,22(1):5-53. [36] COLLINS A,TKACZYK D,BEEL J.A Novel Approach toRecommendation Algorithm Selection using Meta-Learning[C]//AICS.2018:210-219. [37] YANG K X,LI Y W.Development and Design of mobile Intelligent Learning Platform based on Collaborative Filtering Algorithm[J].Software Engineering and Applications,2019,8(3):104-114. [38] AHARON M,ELAD M,BRUCKSTEIN A.K-SVD:An algo-rithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. [39] KOREN Y.Factorization meets the neighborhood:a multiface-ted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2008:426-434. [40] WANG X,YANG H,LIM K.Privacy-preserving POI recommendation using nonnegative matrix factorization[C]//2018 IEEE Symposium on Privacy-aware Computing(PAC).New York:IEEE,2018:117-118. [41] BARRON E N,ISHII H.The Bellman equation for minimizing the maximum cost[J].Nonlinear Analysis:Theory,Methods & Applications,1989,13(9):1067-1090. [42] AMIT R,MEIR R,CIOSEK K.Discount factor as a regularizer in reinforcement learning[C]//International Conference on Machine Learning.PMLR,2020:269-278. |
[1] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[2] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[3] | YU Bin, LI Xue-hua, PAN Chun-yu, LI Na. Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning [J]. Computer Science, 2022, 49(7): 248-253. |
[4] | LI Meng-fei, MAO Ying-chi, TU Zi-jian, WANG Xuan, XU Shu-fang. Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient [J]. Computer Science, 2022, 49(7): 271-279. |
[5] | SHUAI Jian-bo, WANG Jin-ce, HUANG Fei-hu, PENG Jian. Click-Through Rate Prediction Model Based on Neural Architecture Search [J]. Computer Science, 2022, 49(7): 10-17. |
[6] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[7] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
[8] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[9] | XIONG Zhong-min, SHU Gui-wen, GUO Huai-yu. Graph Neural Network Recommendation Model Integrating User Preferences [J]. Computer Science, 2022, 49(6): 165-171. |
[10] | XIE Wan-cheng, LI Bin, DAI Yue-yue. PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing [J]. Computer Science, 2022, 49(6): 3-11. |
[11] | YU Ai-xin, FENG Xiu-fang, SUN Jing-yu. Social Trust Recommendation Algorithm Combining Item Similarity [J]. Computer Science, 2022, 49(5): 144-151. |
[12] | LI Peng, YI Xiu-wen, QI De-kang, DUAN Zhe-wen, LI Tian-rui. Heating Strategy Optimization Method Based on Deep Learning [J]. Computer Science, 2022, 49(4): 263-268. |
[13] | OUYANG Zhuo, ZHOU Si-yuan, LYU Yong, TAN Guo-ping, ZHANG Yue, XIANG Liang-liang. DRL-based Vehicle Control Strategy for Signal-free Intersections [J]. Computer Science, 2022, 49(3): 46-51. |
[14] | CHEN Jin-peng, HU Ha-lei, ZHANG Fan, CAO Yuan, SUN Peng-fei. Convolutional Sequential Recommendation with Temporal Feature and User Preference [J]. Computer Science, 2022, 49(1): 115-120. |
[15] | DAI Shan-shan, LIU Quan. Action Constrained Deep Reinforcement Learning Based Safe Automatic Driving Method [J]. Computer Science, 2021, 48(9): 235-243. |
|