Computer Science ›› 2020, Vol. 47 ›› Issue (11A): 28-34.doi: 10.11896/jsjkx.191100114
• Artificial Intelligence • Previous Articles Next Articles
HUO Dan1, ZHANG Sheng-jie2, WAN Lu-jun1
CLC Number:
[1] LAI S W.Word and Document Embeddings based on NeuralNetwork Approaches[D].Beijing:Institute of Automation Chinese Academy of Sciences,2016. [2] THOMAS K L,PETER W F,DARRELL L.An introduction to latent semantic analysis[J].Discourse processes,1988,25(2/3):259-284. [3] MICHAEL N J,DOUGLAS J K M.Representing word meaning and order information in a composite holographic lexicon[J].Psychological review,2007:114(1):301-311. [4] SOCHER R,PERELYGIN A,WU J.Recursive Deep Models for Semantic Composition- ality Over a Sentiment Treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.2013:1631-1642. [5] YESSENALINA A,CARDIE C.Compositional matrix-spacemodels for sentiment analysis[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Proces-sing.2011:172-182. [6] COLLOBERT R,WESTON J,BOTTOU L.Natural Language Processing (Almost) from Scratch[J].Journal of Machine Learning Research,2011:2493-2537. [7] ZHENG X,CHEN H,XU T.Deep learning for Chinese word segmentation and POS tagging[C]//Proceeings of the 2013 Conference on Empirical Methods in Natural Language Proces-sing.2013:647-657. [8] TANG D,WEI F,YANG N,et al.Learning entiment-specificword embedding for twitter sentiment classification[C]//Proceedings of the 2014/ 52th Annu.Meeting Assoc.Computer.Linguistics,2014:1555-1565. [9] BENGIO Y,DUCHARME R,VINCENT P.A neural probabilistic language model[J].Journal of Machine Learning Research,2003:1137-1155. [10] LUO Y,LI L,TAN S,et al.Sentiment analysis on Chinese Micro-blog corpus[J].Journal of Shandong University (Natural Science),2014,49(11):1-7. [11] CHEN X D.Research on Sentiment Dictionary based Emotional Tendency Analysis of Chinese MicroBlog[D].Wuhan:Huazhong University of Science & Technology,2012. [12] TURIAN J,RATINOV L,BENGIO Y.Word representations:a simple and general method for semi-supervised learning[C]//ACL 2010,Proceedings of the,Meeting of the Association for Computational Linguistics,Uppsala,Sweden.DBLP,2010:384-394. [13] PENNINGTON J,SOCHER R,MANNING C.Glove:GlobalVectors for Word Representation[C]//Conference on Empirical Methods in Natural Language Processing.2014:1532-1543. [14] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estimation of Word Representations in Vector Space[J].Computer Science,2013:566-569. [15] IRSOY O,CARDIE C.Opinion Mining with Deep RecurrentNeural Networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:720-728. [16] PILEHVAR M T,COLLIER N.Improved Semantic Representation for Domain-Specific Entities[C]//Proceedings of the 15th Workshop on Biomedical Natural Language Processing.2016:13-16. [17] PANG B,LEE L,VAITHYANATHAN S.Thumbs up Sentiment Classification using Machine Learning Techniques[C]//Proceeings of the 2002 Conference on Clinical Orthopaedics and Related Research.2002:79-86. [18] ANDREW L M,RAYMOND E D,PETER T P,et al.Learning word vectors for sentiment analysis[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL).2011:142-150. [19] JEFFREY P,RICHARD S,CHRISTOPHER D M.GloVe:Global Vectors for Word Representation[C]//Proceedings of the 2014 Empiricial Methods in Natural Language Processing.Washington,DC:IEEE Computer Society,2014:1201-1220. [20] BENGIO Y,COURVILLE A,VINCENT P.RepresentationLearning:A Review and New Perspectives[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828. [21] MIKOLOV T,SUTSKEVER I,CHEN T,et al.Distributed represen- tations of words and phrases and their compositionality[C]//Proceedings of the 2013/15th International Conference on Neural Information Processing Systems.2013:3111-3119. [22] BRIDLE J.Probabilistic interpretation of feed forward classification network outputs,with relationships to statistical pattern recognition in Neurocomputing[C]//Proceedings of the 1990 Neurocomputing:Algorithms,Architectures and Applications.Berlin:Springer,1990:227-236. [23] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing (almost) from scratch[J].Journal of Machine Learning Research,2011,12:2493-2537. [24] MNIH A,KAVUKCUOGLU K.Learning word embeddings efficiently with noise- contrastive estimation[J].Advances in Neural Information Processing Systems,2013:2265-2273. [25] BARONI M,DINU G,KRUSZEWSKI G.Don't count,predict! A systematic comparison of Context-counting vs.Context-predicting semantic vectors[C]//Proceedings of the 2014/ 52th Annu.Meeting Assoc.Computer Linguistics.2014:238-247. [26] DUCHI J,HAZAN E,SINGER Y.Adaptive subgradient metho-ds for online learning and stochastic optimization[J].Journal of Machine Learning Research,2011,12(2):2121-2159. [27] SOCHER R,PERELYGIN A,WU J,et al.Recursive deep mo-dels for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference Empirical Methods Natural Lang.2013:1631-1642. [28] ZHANG W,SHI W X,LIU D N,et al.Improved Approach of Word Vector Learning Via Sentiment Information[J].Application Research of Computers,2016,34(8):120-130. [29] RUMELHART D,HINTON G,WILLIAMS R.Learning representations by back-propagating errors[J].Cognitive Modeling,1988,5:1003-1120. [30] LABUTOV L,LIPSON H.Reembedding words[C]//Procee-dings of the 2013 Meeting of Association for Computational Linguistics (ACL).2013:489-493. [31] COLLOBERT R,WESTON J.A unified architecture for natural language processing:Deep neural networks with multitask lear-ning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008:160-167. [32] TANG D,QIN B,LIU T,et al.User modeling with neural network for review rating prediction[C]//Proceedings of the 2015/24th International Conference Analysis and Machine Intelligence.2015:1340-1346. |
[1] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[2] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[3] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[4] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[5] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[6] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[7] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[8] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
[9] | LIN Xi, CHEN Zi-zhuo, WANG Zhong-qing. Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning [J]. Computer Science, 2022, 49(6A): 144-149. |
[10] | GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao. Hybrid Recommender System Based on Attention Mechanisms and Gating Network [J]. Computer Science, 2022, 49(6): 158-164. |
[11] | ZHANG Hong-min, LI Ping-ping, FANG Xiao-bing, LIU Hong. Human Abnormal Behavior Detection Method Based on Improved YOLOv3 Network Model [J]. Computer Science, 2022, 49(4): 233-238. |
[12] | LI Yong, WU Jing-peng, ZHANG Zhong-ying, ZHANG Qiang. Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism [J]. Computer Science, 2022, 49(4): 43-48. |
[13] | PAN Zhi-hao, ZENG Bi, LIAO Wen-xiong, WEI Peng-fei, WEN Song. Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2022, 49(3): 294-300. |
[14] | SHAO Hai-lin, JI Yi, LIU Chun-ping, XU Yun-long. Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network [J]. Computer Science, 2022, 49(2): 248-255. |
[15] | ZHANG Hu, BAI Ping. Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification [J]. Computer Science, 2022, 49(2): 279-284. |
|