Computer Science ›› 2022, Vol. 49 ›› Issue (8): 323-329.doi: 10.11896/jsjkx.220200077
• Information Security • Previous Articles Next Articles
HAO Zhi-rong1, CHEN Long1,2, HUANG Jia-cheng1
CLC Number:
[1]LIANG B,LI H,SU M,et al.Deep text classification can be fooled[C]//Proceedings of the 27th International Joint Confe-rence on Artificial Intelligence.Stockholm:AAAI Press,2018:4208-4215. [2]WANG W Q,WANG R,WANG L N,et al.Adversarial examples generation approach for tendency classification on Chinese texts[J].Ruan Jian Xue Bao/Journal of Software,2019,30(8):2415-2427. [3]TONG X,WANG L N,WANG R Z,et al.A Generation Method of Word-level Adversarial Samples for Chinese Text Classification[J].Netinfo Security,2020,20(9):12-16. [4]CHENG M,YI J,CHEN P Y,et al.Seq2sick:Evaluating the robustness of sequence-to-sequence models with adversarial examples[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI Press,2020,34(4):3601-3608. [5]ILYAS A,SANTURKAR S,TSIPRAS D,et al.Adversarial examples are not bugs,they are features[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.Red Hook:Curran Associates Inc,2019:125-136. [6]ZHANG C,BENZ P,IMTIAZ T,et al.Understanding adve-rsarial examples from the mutual influence of images and perturbations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2020:14521-14530. [7]TONG X,WANG B J,WANG R Z,et al.Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing[J].Computer Science,2021,48(1):258-267. [8]BEHJATI M,MOOSAVI-DEZFOOLI S M,BAGHSHAH M S,et al.Universal adversarial attacks on text classifiers[C]//2019 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2019).Brighton:IEEE Press,2019:7345-7349. [9]WALLACE E,FENG S,KANDPAL N,et al.Universal Adversarial Triggers for Attacking and Analyzing NLP[C]//Procee-dings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).Hong Kong:ACL Press,2019:2153-2162. [10]SONG L,YU X,PENG H T,et al.Universal Adversarial Attacks with Natural Triggers for Text Classification[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Online:ACL Press,2021:3724-3733. [11]MOOSAVI-DEZFOOLI S M,FAWZI A,FAWZI O,et al.Universal adversarial perturbations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2017:1765-1773. [12]HEIDENREICH H S,WILLIAMS J R.The Earth Is Flat and the Sun Is Not a Star:The Susceptibility of GPT-2 to Universal Adversarial Triggers[C]//Proceedings of the 2021 AAAI/ACM Conference on AI,Ethics,and Society.New York:ACM Press,2021:566-573. [13]GUPTA T,SINHA A,KUMARI N,et al.A method for computing class-wise universal adversarial perturbations[J].arXiv:1912.00466,2019. [14]ZHANG C,BENZ P,IMTIAZ T,et al.Cd-uap:Class discriminative universal adversarial perturbation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI Press,2020,34(4):6754-6761. [15]BENZ P,ZHANG C,IMTIAZ T,et al.Double targeted universal adversarial perturbations[C]//Proceedings of the Asian Conference on Computer Vision.Kyoto:ACCVPress,2020:1-17. [16]EBRAHIMI J,RAO A,LOWD D,et al.HotFlip:White-Box Adversarial Examples for Text Classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers).Melbourne:ACL Press,2018:31-36. [17]SOCHER R,PERELYGIN A,WU J,et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.Seattle:ACL Press,2013:1631-1642. [18]ZHANG X,ZHAO J,LECUN Y.Character-level convolutional networks for text classification[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems (Volume 1).Cambridge,MA,USA:MIT Press,2015:649-657. [19]LI L,SHAO Y,SONG D,et al.Generating Adversarial Examples in Chinese Texts Using Sentence-Pieces[J].arXiv:2012.14769,2020. [20]KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).Doha:ACL Press,2014.1746-1751. [21]MCCANN B,BRADBURY J,XIONG C,et al.Learned inTranslation:Contextualized Word Vectors[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Red Hook,NY,USA:Curran Associates Inc,2017:6297-6308. [22]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing(EMNLP).Doha:ACL Press,2014:1532-1543. [23]LI S,ZHAO Z,HU R,et al.Analogical Reasoning on Chinese Morphological and Semantic Relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers).Melbourne:ACL Press,2018:138-143. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[4] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[5] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[8] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[9] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[10] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[11] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[12] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[13] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[14] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[15] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
|