Computer Science ›› 2022, Vol. 49 ›› Issue (6A): 418-423.doi: 10.11896/jsjkx.210700210
• Image Processing & Multimedia Technology • Previous Articles Next Articles
WANG Jian-ming1, CHEN Xiang-yu1, YANG Zi-zhong2, SHI Chen-yang1, ZHANG Yu-hang1, QIAN Zheng-kun1
CLC Number:
[1] ZHU J T,YAO G L,ZHANG G X,et al.Survey of Few Shot Learning of Deep Neural Network[J].CEA,2021,57(7):22-33. [2] YAN L C,YOSHUA B,GEOFFREY H.Deep Learning[J].Nature,2015,521(7553):436-444. [3] JORDAN M I,MITCHELL T M.Machine Learning:Trends,Perspectives,and Prospects[J].Science,2015,349(6245):255-260. [4] ALBAWI S,MOHAMMED T A,AL-ZAWI S.Understandingof aConvolutional Neural Network[C]//International Confe-rence on Engineering and Technology(ICET).IEEE,2017:1-6. [5] NOROUZZADEH M S,NGUYEN A,KOSMALA M,et al.Automatically Identifying,Counting,and Describing Wild Animals in Camera-trap Images with Deep Learning[J].Proceedings of the National Academy of Sciences,2018,115(25):E5716-E5725. [6] DIETTERICH T.Overfitting andUndercomputing in MachineLearning[J].ACM Computing Surveys(CSUR),1995,27(3):326-327. [7] BIEHL M,GHOSH A,HAMMER B.Dynamics and Generalization Ability of LVQ Algorithms[J].Journal of Machine Learning Research,2007,8(8):323-360. [8] KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNetClassification with Deep Convolutional Neural Networks[J].Communications of the ACM,2017,60(6):84-90. [9] SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[C]//International Conference on Learning Representations(ICLR).2015. [10] RUSSO F.An Image Enhancement Technique Combining Shar-pening and Noise Reduction[J].IEEE Transactions on Instrumentation and Measurement,2002,51(4):824-828. [11] RANA P,CHOPRA V.A Study on Image Enhancement Techniques[J].IJARCCE,2015,4(5):609-611. [12] LIU S K,TANG P,JIN W D.Study on Catenary Dropper and Support Detection Based on Intelligent Data Augmentation and Improved YOLOv3[J].Computer Science,2020,47(11A):178-182. [13] BAO Y X,LU T L,DU Y H,et al.Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation[J].Computer Science,2021,48(7):77-85. [14] ZHONG Z,ZHENG L,KANG G,et al.Random Erasing Data Augmentation[J].Proceedings of the AAAI Conference on Artificial Intelligence,2017,34(7):13001-13008. [15] CHEN P,LIU S,ZHAO H,et al.GridMask Data Augmentation[J].arXiv:2001.04086,2020. [16] PEREZ L,WANG J.The Effectiveness of Data Augmentation in Image Classification using Deep Learning[J].arXiv:1712.04621,2017. [17] GIROSI F,JONES M,POGGIO T.Regularization Theory andNeural Networks Architectures[J].Neural computation,1995,7(2):219-269. [18] SCHWARTZ E,KARLINSKY L,SHTOK J,et al.Delta-en-coder:An Effective Sample Synthesis Method for Few-shot Object Recognition[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS'18).2018:2850-2860. [19] WANG Y Q,YAO Q M,KWOK J T,et al.Generalizing from a Few Examples:A Survey on Few-shot Learning[J].ACM Computing Surveys,2020,53(3):1-34. [20] YUE Z Q,ZHANG H W,SUN Q R,et al.Interventional Few-Shot Learning[J].arXiv:2009.13000,2020. [21] LU J,GONG P H,YE J P,et al.Learning from Very Few Samples:A Survey[J].arXiv:2009.02653,2020. [22] IOFFE S,SZEGEDY C.Batch normalization:AcceleratingDeep Network Training by Reducing Internal Covariate shift[C]//International Conference on Machine Learning(ICML).2015:448-456. [23] RIBEIRO M T,SINGH S,GUESTRIN C.“Why Should ITrust You?” Explaining the Predictions of any Classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1135-1144. [24] YU Y,WANG L W,ZHANG Y L.Data Enhancement Algorithm Based on the Correlation between Feature Extraction Preference and Background Color[J].Computer Applications,2019,39(11):3172-3177. [25] CORRADO A.Animal Pictures of 10 Different CategoriesTaken from Google Images[EB/OL].(2019-12-13)[2021-07-21].https://www.kaggle.com/alessiocorrado99/animals10/metadata. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[8] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[9] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[10] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[11] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[12] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[13] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[14] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[15] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
|