Computer Science ›› 2022, Vol. 49 ›› Issue (5): 105-112.doi: 10.11896/jsjkx.210100108
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZHANG Wen-xuan, WU Qin
CLC Number:
[1]WELINDER P,BRANSON S,MITA T,et al.The Caltech-UCSD Birds-200-2011 Dataset[R].California Institute of Technology,2011:1-15. [2]RABIEE H,HADDADNIA J,MOUSAVI H,et al.Novel dataset for fine-grained abnormal behavior understanding in crowd[C]//IEEE International Conference on Advanced Video & Signal Based Surveillance.2016:121-130. [3]YANG W G,HUAI Y J.Flower Image Enhancement and Classification Based on Deep Convolution Generative Adversarial Network[J].Computer Science,2020,47(6):176-179. [4]KRAUSE J,STARK M,DENG J,et al.3D Object Representations for Fine-Grained Categorization[C]//IEEE International Conference on Computer Vision Workshops.2013:554-561. [5]MAJI S,RAHTU E,KANNALA J,et al.Fine-Grained VisualClassification of Aircraft[C]//IEEE International Conference on Advanced Video & Signal Based Surveillance.2013:1-6. [6]PERRONNIN F,DANCE C.Fisher Kernels on Visual Vocabularies for Image Categorization[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition.2007:1-8. [7]SÁNCHEZ J,MENSINK T,VERBEEK J.Image Classification with the Fisher Vector:Theory and Practice[J].International Journal of Computer Vision,2013,105(1):222-245. [8]LOWE D G.Object recognition from local scale-invariant fea-tures[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision.1999:1150-1157. [9]DALAL N,TRIGGS B.Histograms of Oriented Gradients for Human Detection[C]//IEEE Computer Society Conference on Computer Vision & Pattern Recognition.2005. [10]DONAHUE J,JIA Y Q,VINYALS O,et al.DeCAF:A Deep Convolutional Activation Feature for Generic Visual Recognition[C]//Proceedings of the 31st International Conference on Machine Learning.PMLR,2014:647-655. [11]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016:770-778. [12]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//ICLR.2015:1-14. [13]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the Inception Architecture for Computer Vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:2818-2826. [14]XIE L,HUANG C.A Residual Network of Water Scene Recognition Based on Optimized Inception Module and Convolutional Block Attention Module[C]//2019 6th International Conference on Systems and Informatics (ICSAI).2019:1174-1178. [15]SUN G,CHOLAKKAL H,KHAN S,et al.Fine-Grained Recognition:Accounting for Subtle Differences between Similar Classes[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(1):12047-12054. [16]TAN M,WANG G,ZHOU J,et al.Fine-Grained Classification via Hierarchical Bilinear Pooling With Aggregated Slack Mask[J].IEEE Access,2017,7(1):117944-117953. [17]YAO B,BRADSKI G,LI F F.A codebook-free and annotation-free approach for fine-grained image categorization[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.2012:3466-3473. [18]CHERIYADAT A M.Unsupervised Feature Learning for Aerial Scene Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(1):439-451. [19]ZHANG N,DONAHUE J,GIRSHICK R,et al.Part-based R-CNNs for Fine-grained Category Detection[C]//European Conference on Computer Vision(ECCV).2014:834-849. [20]HE K,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):386-397. [21]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//2015 IEEE Confe-rence on Computer Vision and Pattern Recognition (CVPR).2015:3431-3440. [22]GE W,LIN X,YU Y.Weakly Supervised Complementary Parts Models for Fine-Grained Image Classification From the Bottom Up[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:3029-3038. [23]XIAO T J,XU Y C,YANG K Y,et al.The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2015:842-850. [24]LIN T,ROYCHOWDHURY A,MAJI S.Bilinear CNN Models for Fine-Grained Visual Recognition[C]//2015 IEEE International Conference on Computer Vision (ICCV).2015:1449-1457. [25]ZHOU M,BAI Y,ZHANG W,et al.Look-Into-Object:Self-Supervised Structure Modeling for Object Recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2020:11771-11780. [26]LIU C,XIE H,ZHA Z J,et al.Filtration and Distillation:Enhancing Region Attention for Fine-Grained Visual Categorization[C]//AAAI Conference on Artificial Intelligence.2020:11555-11562. [27]HUANG S,WANG X,DAO D.SnapMix:Semantically Proportional Mixing for Augmenting Fine-grained Data[C]//AAAI Conference on Artificial Intelligence.2021:1-8. [28]WU J,XU J,DING T.Fine-grained Image Classification Algorithm Based on Ensemble Methods of Transfer Learning[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2020,32(3):452-458. [29]ZHENG H,FU J,MEI T,et al.Learning Multi-attention Con-volutional Neural Network for Fine-Grained Image Recognition[C]//2017 IEEE International Conference on Computer Vision (ICCV).2017:5219-5227. [30]SUN M,YUAN Y,ZHOU F,et al.Multi-Attention Multi-Class Constraint for Fine-grained Image Recognition[C]//European Conference on Computer Vision(ECCV).2018:834-850. [31]YANG Z,LUO T,WANG D,et al.Springer International Publishing Learning to Navigate for Fine-Grained Classification[C]//European Conference on Computer Vision(ECCV).2018:438-454. [32]LUO W,ZHANG H,LI J,et al.Learning Semantically En-hanced Feature for Fine-Grained Image Classification[J].IEEE Signal Processing Letters,2020,27:1545-1549. [33]CHEN Y,BAI Y,ZHANG W,et al.Destruction and Construction Learning for Fine-Grained Image Recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:5152-5161. [34]HU T,QI H.See Better Before Looking Closer:Weakly Supervised Data Augmentation Network for Fine-Grained Visual Classification[J/OL].https://arxiv.org/abs/1901.09891. [35]ZHAO B,WU X,FENG J,et al.Diversified Visual Attention Networks for Fine-Grained Object Classification[J].IEEE Transactions on Multimedia,2017,19(6):1245-1256. [36]DUBEY A,GUPTA O,GUO P,et al.Pairwise Confusion for Fine-Grained Visual Classification[C]//European Conference on Computer Vision(ECCV).2018:71-88. |
[1] | HU Fu-yuan, WAN Xin-jun, SHEN Ming-fei, XU Jiang-lang, YAO Rui, TAO Zhong-ben. Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network [J]. Computer Science, 2022, 49(5): 10-24. |
[2] | XU Hua-chi, SHI Dian-xi, CUI Yu-ning, JING Luo-xi, LIU Cong. Time Information Integration Network for Event Cameras [J]. Computer Science, 2022, 49(5): 43-49. |
[3] | ZHAO Ren-xing, XU Pin-jie, LIU Yao. ECG-based Atrial Fibrillation Detection Based on Deep Convolutional Residual Neural Network [J]. Computer Science, 2022, 49(5): 186-193. |
[4] | LI Zi-yi, ZHOU Xia-bing, WANG Zhong-qing, ZHANG Min. Stance Detection Based on User Connection [J]. Computer Science, 2022, 49(5): 221-226. |
[5] | LIU Lin-yun, CHEN Kai-yan, LI Xiong-wei, ZHANG Yang, XIE Fang-fang. Overview of Side Channel Analysis Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(5): 296-302. |
[6] | GAO Yue, FU Xiang-ling, OUYANG Tian-xiong, CHEN Song-ling, YAN Chen-wei. EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network [J]. Computer Science, 2022, 49(4): 30-36. |
[7] | ZHAO Kai, AN Wei-chao, ZHANG Xiao-yu, WANG Bin, ZHANG Shan, XIANG Jie. Intracerebral Hemorrhage Image Segmentation and Classification Based on Multi-taskLearning of Shared Shallow Parameters [J]. Computer Science, 2022, 49(4): 203-208. |
[8] | XU Hua-jie, QIN Yuan-zhuo, YANG Yang. Scene Recognition Method Based on Multi-level Feature Fusion and Attention Module [J]. Computer Science, 2022, 49(4): 209-214. |
[9] | LI Guo-quan, YAO Kai, PANG Yu. Automatic Identification Algorithm of Blood Cell Image Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(4): 247-253. |
[10] | LIU Shuo, WANG Geng-run, PENG Jian-hua, LI Ke. Chinese Short Text Classification Algorithm Based on Hybrid Features of Characters and Words [J]. Computer Science, 2022, 49(4): 282-287. |
[11] | ZHOU Ying, CHANG Ming-xin, YE Hong, ZHANG Yan. Super Resolution Reconstruction Method of Solar Panel Defect Images Based on Meta-transfer [J]. Computer Science, 2022, 49(3): 185-191. |
[12] | ZUO Jie-ge, LIU Xiao-ming, CAI Bing. Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion [J]. Computer Science, 2022, 49(3): 197-203. |
[13] | ZHANG Lyu, ZHOU Bo-wen, WU Liang-hong. SSD Network Based on Improved Convolutional Attention Module and Residual Structure [J]. Computer Science, 2022, 49(3): 211-217. |
[14] | LI Hao, ZHANG Lan, YANG Bing, YANG Hai-xiao, KOU Yong-qi, WANG Fei, KANG Yan. Fine-grained Sentiment Classification of Chinese Microblogs Combining Dual Weight Mechanismand Graph Convolutional Neural Network [J]. Computer Science, 2022, 49(3): 246-254. |
[15] | LENG Jia-xu, WANG Jia, MO Meng-jing-cheng, CHEN Tai-yue, GAO Xin-bo. Survey on Video Super-resolution Based on Deep Learning [J]. Computer Science, 2022, 49(2): 123-133. |
|