Computer Science ›› 2022, Vol. 49 ›› Issue (9): 48-54.doi: 10.11896/jsjkx.210700109
• Database & Big Data & Data Science • Previous Articles Next Articles
WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan
CLC Number:
[1]GOPALAN P,HOFMAN J M,BLEI D M.Scalable Recommendation with Hierarchical Poisson Factorization[C]//UAI.2015:326-335. [2]HU Y,KOREN Y,VOLINSKY C.Collaborative filtering forimplicit feedback datasets[C]//2008 Eighth IEEE International Conference on Data Mining.IEEE,2008:263-272. [3]MNIH A,SALAKHUTDINOV R R.Probabilistic matrix fac-torization[J].Advances in Neural Information Processing Systems,2007,20:1257-1264. [4]LIANG D,ALTOSAAR J,CHARLIN L,et al.Factorizationmeets the item embedding:Regularizing matrix factorization with item co-occurrence[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:59-66. [5]WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the Ninth ACM International Conference on Web Search and Data Mining.2016:153-162. [6]ELAHI E,WANG W,RAY D,et al.Variational low rank multinomials for collaborative filtering with side-information[C]//Proceedings of the 13th ACM Conference on Recommender Systems.2019:340-347. [7]LI X,SHE J.Collaborative variational autoencoder for recommender systems[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:305-314. [8]SACHDEVA N,MANCO G,RITACCO E,et al.Sequentialvariational autoencoders for collaborative filtering[C]//Procee-dings of the Twelfth ACM International Conference on Web Search and Data Mining.2019:600-608. [9]WANG Z,CHEN C,ZHANG K,et al.Variational recurrentmodel for session-based recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:1839-1842. [10]LIANG D,KRISHNAN R G,HOFFMAN M D,et al.Varia-tional autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference.2018:689-698. [11]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [12]KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [13]SHENBIN I,ALEKSEEV A,TUTUBALINA E,et al.Recvae:A new variational autoencoder for top-n recommendations with implicit feedback[C]//Proceedings of the 13th International Conference on Web Search and Data Mining.2020:528-536. [14]LUCAS J,TUCKER G,GROSSE R,et al.Don't blame the Elbo! a linear Vae perspective on posterior collapse[J].arXiv:1911.02469,2019. [15]TRAN D,BLEI D M,AIROLDI E M.Copula variational infe-rence[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2.2015:3564-3572. [16]DINH L,SOHL-DICKSTEIN J,BENGIO S.Density estimation using real nvp[J].arXiv:1605.08803,2016. [17]REZENDE D,MOHAMED S.Variational inference with normalizing flows[C]//International Conference on Machine Learning.PMLR,2015:1530-1538. [18]OORD A,VINYALS O,KAVUKCUOGLU K.Neural discrete representation learning[J].arXiv:1711.00937,2017. [19]OORD A,KALCHBRENNER N,VINYALS O,et al.Condi-tional image generation with PixelCNN decoders[C]//Procee-dings of the 30th International Conference on Neural Information Processing Systems.2016:4797-4805. [20]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//ICLR(Poster).2015. [21]NING X,KARYPIS G.Slim:Sparse linear methods for top-n recommender systems[C]//2011 IEEE 11th International Conference on Data Mining.IEEE,2011:497-506. [22]EBESU T,SHEN B,FANG Y.Collaborative memory network for recommendation systems[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:515-524. [23]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [24]LI X,CHIN J Y,CHEN Y,et al.Sinkhorn Collaborative Filtering[C]//Proceedings of the Web Conference 2021.2021:582-592. |
[1] | CHENG Zhang-tao, ZHONG Ting, ZHANG Sheng-ming, ZHOU Fan. Survey of Recommender Systems Based on Graph Learning [J]. Computer Science, 2022, 49(9): 1-13. |
[2] | SUN Xiao-han, ZHANG Li. Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace [J]. Computer Science, 2022, 49(7): 50-56. |
[3] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
[4] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[5] | GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao. Hybrid Recommender System Based on Attention Mechanisms and Gating Network [J]. Computer Science, 2022, 49(6): 158-164. |
[6] | CHEN Zhuang, ZOU Hai-tao, ZHENG Shang, YU Hua-long, GAO Shang. Diversity Recommendation Algorithm Based on User Coverage and Rating Differences [J]. Computer Science, 2022, 49(5): 159-164. |
[7] | QIAO Jie, CAI Rui-chu, HAO Zhi-feng. Mining Causality via Information Bottleneck [J]. Computer Science, 2022, 49(2): 198-203. |
[8] | DONG Xiao-mei, WANG Rui, ZOU Xin-kai. Survey on Privacy Protection Solutions for Recommended Applications [J]. Computer Science, 2021, 48(9): 21-35. |
[9] | ZHAN Wan-jiang, HONG Zhi-lin, FANG Lu-ping, WU Zhe-fu, LYU Yue-hua. Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning [J]. Computer Science, 2021, 48(7): 172-177. |
[10] | SHAO Chao, SONG Shu-mi. Collaborative Filtering Recommendation Algorithm Based on User Preference Under Trust Relationship [J]. Computer Science, 2021, 48(6A): 240-245. |
[11] | WU Jian-xin, ZHANG Zhi-hong. Collaborative Filtering Recommendation Algorithm Based on User Rating and Similarity of Explicit and Implicit Interest [J]. Computer Science, 2021, 48(5): 147-154. |
[12] | XIAO Shi-tao, SHAO Ying-xia, SONG Wei-ping, CUI Bin. Hybrid Score Function for Collaborative Filtering Recommendation [J]. Computer Science, 2021, 48(3): 113-118. |
[13] | HAO Zhi-feng, LIAO Xiang-cai, WEN Wen, CAI Rui-chu. Collaborative Filtering Recommendation Algorithm Based on Multi-context Information [J]. Computer Science, 2021, 48(3): 168-173. |
[14] | HAN Li-feng, CHEN Li. User Cold Start Recommendation Model Integrating User Attributes and Item Popularity [J]. Computer Science, 2021, 48(2): 114-120. |
[15] | LI Kang-lin, GU Tian-long, BIN Chen-zhong. Multi-space Interactive Collaborative Filtering Recommendation [J]. Computer Science, 2021, 48(12): 181-187. |
|