Computer Science ›› 2021, Vol. 48 ›› Issue (3): 113-118.doi: 10.11896/jsjkx.200900067
Special Issue: Big Data & Data Scinece
• Database & Big Data & Data Science • Previous Articles Next Articles
XIAO Shi-tao1, SHAO Ying-xia1, SONG Wei-ping2, CUI Bin2
CLC Number:
[1]YI X,YANG J,HONG L,et al.Sam-pling-bias-corrected neural modeling for large corpus item recommendations[C]//Procee-dings of ACM Conference on Recommender Systems.Copenha-gen:Association for Computing Machinery,2019:269-277. [2]EBESU T,SHEN B,FANG Y.Collaborative Memory Network for Recommendation Systems[C]//Proceedings of the International ACM SIGIR Conference.Ann Arbor:Association for Computing Machinery,2018:515-524. [3]KOREN Y,BELL R,VOLINSKY C.Matrix Factorization Tech-niques for Recommender Systems[J].Computer,2009,42(8):30-37. [4]CHEN X,XU H,ZHANG Y,et al.Sequential Recommendation with User Memory Net-works[C]//Proceedings of the ACM International Conference on Web Search and Data Mining.Marina Del Rey:Association for Computing Machinery,2018:108-116. [5]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Conference on Uncertainty in Artificial Intelligence.Montreal:AUAI Press,2009:452-461. [6]ZHENG L,LU C,JIANG F,et al.Spectral col-laborative filtering[C]//Proceedings of ACM Conference on Recommender Systems.Vancouver:Association for Computing Machinery,2018:311-319. [7]HE X,LIAO L,ZHANG H,et al.Neural Collabora-tive Filtering[C]//Proceedings of the International Conference on World Wide Web.Perth:International World Wide Web Conferences Steering Committee,2017:173-182. [8]HSIEH C,YANG L,CUI Y,et al.Collaborative Metric Lear-ning[C]//Proceedings of the International Conference on World Wide Web.Perth:International World Wide Web Conferences Steering Committee,2017:193-201. [9]XIAO H,HUANG M,ZHU X.From one point to a manifold:knowledge graph embedding for precise link prediction[C]//Proceedings of the Conference on Uncertainty in Artificial Intelligence.New York:AUAI Press,2016:1315-1321. [10]WANG X,HE X,WANG M,et al.Neural Graph Collaborative Filtering[C]//Proceedings of the International ACM SIGIR Conference.Paris:Association for Computing Machinery,2019:165-174. [11]WANG H,WANG N,YEUNG D.Collaborative Deep Learning for Recommender Systems [C]//Proceedings of the ACM SIGKDD International Conference.Sydney:Association for Computing Machinery,2015:1235-1244. [12]KHOSHNESHIN M,STREET W.Collaborative filtering viaeuclidean embedding[C]//Proceedings of ACM Conference on Recommender Systems.Barcelona:Association for Computing Machinery,2010:87-94. [13]CEN Y,ZOU X,ZHANG J,et al.Representation Learning for Attributed Multiplex Heterogeneous Net-work[C]//Procee-dings of the ACM SIGKDD International Conference.Ancho-rage:Association for Computing Machinery,2019:1358-1368. [14]MASSA P,AVESANI P.Trust-aware recom-mender systems[C]//Proceedings of ACM Conference on Recommender Systems.Minneapolis:Association for Computing Machinery,2007:17-24. [15]ZIEGLER C,MCNEE S,KONSTAN J,et al.Improving recommendation lists through topic diversi-fication[C]//Proceedings of the International Conference on World Wide Web.Chiba:International World Wide Web Conferences Steering Committee,2005:22-32. [16]MCAULEY J,TARGETT C,SHI Q,et al.Image-Based Recommendations on Styles and Substitutes[C]//Proceedings of the International ACM SIGIR Conference.Santiago:Association for Computing Machinery,2015:43-52. [17]HE X,CHEN T,KAN M,et al.TriRank:Review-aware Ex-plainable Recommendation by Model-ing Aspects[C]//Procee-dings of the ACM International on Conference on Information and Knowledge Management.Melbourne:Association for Computing Machinery,2015:1661-1670. [18]HERLOCKER J,KONSTAN J,BORCHERS A,et al.An algorithmic framework for performing collaborative filtering[C]//Proceedings of the International ACM SIGIR Conference.Berkeley:Association for Computing Machinery,1999:230-237. [19]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]//Procee-dings of the International Conference on World Wide Web.Hong Kong:International World Wide Web Conferences Steering Committee,2001:285-295. [20]KOREN Y.Factorization meets the neighborhood:a multiface-ted collaborative filtering model[C]//Proceedings of the ACM SIGKDD International Conference.Las Vegas:Association for Computing Machinery,2008:426-434. |
[1] | CHENG Zhang-tao, ZHONG Ting, ZHANG Sheng-ming, ZHOU Fan. Survey of Recommender Systems Based on Graph Learning [J]. Computer Science, 2022, 49(9): 1-13. |
[2] | WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan. Collaborative Filtering Recommendation Method Based on Vector Quantization Coding [J]. Computer Science, 2022, 49(9): 48-54. |
[3] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[4] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[5] | SHUAI Jian-bo, WANG Jin-ce, HUANG Fei-hu, PENG Jian. Click-Through Rate Prediction Model Based on Neural Architecture Search [J]. Computer Science, 2022, 49(7): 10-17. |
[6] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[7] | SUN Xiao-han, ZHANG Li. Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace [J]. Computer Science, 2022, 49(7): 50-56. |
[8] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
[9] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[10] | HONG Zhi-li, LAI Jun, CAO Lei, CHEN Xi-liang, XU Zhi-xiong. Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration [J]. Computer Science, 2022, 49(6): 149-157. |
[11] | GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao. Hybrid Recommender System Based on Attention Mechanisms and Gating Network [J]. Computer Science, 2022, 49(6): 158-164. |
[12] | XIONG Zhong-min, SHU Gui-wen, GUO Huai-yu. Graph Neural Network Recommendation Model Integrating User Preferences [J]. Computer Science, 2022, 49(6): 165-171. |
[13] | YU Ai-xin, FENG Xiu-fang, SUN Jing-yu. Social Trust Recommendation Algorithm Combining Item Similarity [J]. Computer Science, 2022, 49(5): 144-151. |
[14] | CHEN Jin-peng, HU Ha-lei, ZHANG Fan, CAO Yuan, SUN Peng-fei. Convolutional Sequential Recommendation with Temporal Feature and User Preference [J]. Computer Science, 2022, 49(1): 115-120. |
[15] | DONG Xiao-mei, WANG Rui, ZOU Xin-kai. Survey on Privacy Protection Solutions for Recommended Applications [J]. Computer Science, 2021, 48(9): 21-35. |
|