Computer Science ›› 2022, Vol. 49 ›› Issue (6): 326-334.doi: 10.11896/jsjkx.210400218
• Artificial Intelligence • Previous Articles Next Articles
DENG Zhao-yang1, ZHONG Guo-qiang1, WANG Dong2
CLC Number:
[1] CHARU C A,ZHAI C X.A survey of text classification algorithms[M]//Mining Text Data.Berlin:Springer,2012:163-222. [2] YAN M.Research on spam filtering algorithm based on fast-Text[D].Guangzhou:South China University of Technology,2020. [3] GRIFFITHS T L,STEYVERS M.Finding scientific topics[J].Proceedings of the National Academy of Sciences,2004,101(suppl. 1):5228-5235. [4] XIA R,ZONG C Q,LI S S.Ensemble of feature sets and classification algorithms for sentiment classification[J].Information Sciences,2011,181(6):1138-1152. [5] ZHOU W X,LAN W F.Summarization Model Using Multi-Task Learning Fused with Text Classification[J].Computer Engineering,2021,47(4):48-55. [6] SWINIARSKI R W,SKOWRON A.Rough set methods in feature selection and recognition[J].Pattern Recognition Letters,2003,24(6):833-849. [7] WONG P C,WHITNEY P,THOMAS J.Visualizing association rules for text mining[C]//Proceedings of the IEEE Symposium on Information Visualization.Piscataway,NJ:IEEE Press,1999:120-123. [8] PENG F C,SCHUURMANS D.Combining naive Bayes andn-gram language models for text classification[C]//Proceedings of the European Conference on Information Retrieval.Berlin:Springer,2003:335-350. [9] JOACHIMS T.Text categorization with support vector ma-chines:learning with many relevant features[C]//Proceedings of the European Conference on Machine Learning.Berlin:Springer,1998:137-142. [10] KANG H S,NAM K,KIM S.The decomposed k-nearest neighbor algorithm for imbalanced text classification[C]//Procee-dings of the International Conference on Future Generation Information Technology.Berlin:Springer,2012:87-94. [11] LI C B,DUAN Q J,JI C H,et al.Method of Short Text Classification Based on CHI and TF-IWF Feature Selection[J].Journal of Chongqing University of Technology(Nature Science),2021,35(5):135-140. [12] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based lear-ning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [13] MIKOLOV T,KARAFIAT M,BURGET L,et al.Recurrentneural network based language model[C]//Proceedings of the 11th Annual Conference of the International Speech Communication Association.2010:1045-1048. [14] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2014:1746-1751. [15] LIU P F,QIU X P,HUANG X J.Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2016:2873-2879. [16] WANG Y,HE Y M,CHEN H X,et al.RHS-CNN:A CNN Text Classification Model Based on Regularized Hierarchical Softmax[J].Journal of Chongqing University of Technology(Natural Science),2020,34(5):187-195. [17] MA Z K,DILIYAER P,ZAOKERE K,et al.A ClassificationAlgorithm for Tourist Question Texts Integrated with Deep Learning Models[J].Computer Engineering,2020,46(11):70-76. [18] YAO L,MAO C S,LUO Y.Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Confe-rence on Artificial Intelligence.Palo Alto,CA:AAAI Press,2019:7370-7377. [19] KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations.2017. [20] HUANGL Z,MA D,LI S J,et al.Text level graph neural network for text classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2019:3444-3450. [21] VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations.2018. [22] VASWANI A,SHAZEER N,PARMERN,et al.Attention is all you need[C]//Proceedings of the 31th International Conference on Neural Information Processing Systems.Cambridge,MA:MIT Press,2017:6000-6010. [23] TANG D Y,QIN B,LIU T.Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2015:1422-1432. [24] PENNINGTON J,SOCHER R,MANNING C D.Glove:global vectors for word representation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2014:1532-1543. [25] CHOK,VAN MERRIENBOER B,GULCEHRE C,et al.Lear-ning phrase representations using rnn encoder-decoder for statistical machine translation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2014:1724-1734. [26] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [27] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2015:1-9. [28] LI Q M,HAN Z C,WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2018:3538-3545. [29] DE BOER P T,KROESE D P,MANNOR S,et al.A tutorial on the cross-entropy method[J].Annals of Operations Research,2005,134(1):19-67. [30] HERSH W,BUCKLEY C,LEONE T J,et al.Ohsumed:an interactive retrieval evaluation and new large test collection for research[C]//Proceedings of the International Conference on Research and Development in Information Retrieval(SIGIR’94).London:Springer,1994:192-201. [31] APTE C,DAMERAU F,WEISS S M.Automated learning ofdecision rules for text categorization[J].ACM Transactions on Information Systems,1994,12(3):233-251. [32] APTE C,DAMERAU F,WEISS S M.Towards language independent automated learning of text categorization models[C]//Proceedings of the International Conference on Research and Development in Information Retrieval(SIGIR’94).London:Springer,1994:23-30. [33] PANG B,LEE L,VAITHYANATHAN S.Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2002:79-86. [34] TANG J,QU M,MEI Q Z.Pte:predictive text embeddingthrough large-scale heterogeneous text networks[C]//Procee-dings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2015:1165-1174. [35] ROUSSEAU F,KIAGIASE,VAZIRGIANNIS M.Text categorization as a graph classification problem[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics.2015:1702-1712. [36] BLANCO R,LIOMA C.Graph-based term weighting for information retrieval[J].Information Retrieval,2012,15(1):54-92. [37] JOULIN A,GRAVE E,BOJANOWSKI P,et al.Bag of tricks for efficient text classification[J].arXiv:1607.01759,2016. [38] SHEN D H,WANG G Y,WANG W L,et al.Baseline needs more love:on simple word-embedding-based models and associated pooling mechanisms[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:440-450. [39] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Cambridge,MA:MIT Press,2016:3844-3852. [40] KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [41] GLOROT X,BENGIO Y.Understanding the difficulty of trai-ning deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics.2010:249-256. [42] HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Im-proving neural networks by preventing co-adaptation of feature detectors[J].arXiv:1207.0580,2012. [43] LEE J,LEE I,KANG J.Self-attention graph pooling[C]//Proceedings of the International Conference on Machine Learning.2019:3734-3743. |
[1] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[2] | DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145. |
[3] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[4] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[5] | XIONG Li-qin, CAO Lei, LAI Jun, CHEN Xi-liang. Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization [J]. Computer Science, 2022, 49(9): 172-182. |
[6] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[7] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[8] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[9] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[10] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[11] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[12] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[13] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[14] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[15] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
|