Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230600138-7.doi: 10.11896/jsjkx.230600138
• Image Processing & Multimedia Technolog • Previous Articles Next Articles
LOU Ren1, HE Renqiang2, ZHAO Sanyuan2,3, HAO Xin2, ZHOU Yueqi1, WANG Xinyuan1, LI Fangfang4
CLC Number:
[1]LIN Y,DONG X,ZHENGL,et al.A bottom-up clustering approach to unsupervised person reidentification[C]//AAAI.2019:8738-8745. [2]LIN Y,XIE L,WU Y,et al.Unsupervisedperson re-identificationvia softened similaritylearning[C]//CVPR.2020:3390-3399. [3]ZENG K,NING M,WANG Y,et al.Hierarchical ClusteringWith Hard-Batch Triplet Loss for Person Re-Identification[C]//CVPR.2020:13657-13665. [4]YANG B,YE M,CHEN J,et al.Augmented Dual Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification[C]//Proceedings of the 30th ACM International Conference on Multimedia(MM’22).2022. [5]LIANG W,WANG G,LAIJ,et al.Homogeneous-to-Heterogeneous:Unsupervised Learning for RGB-Infrared Person Re-Identification[C]//IEEE Transactions on Image Processing.2021:6392-6407. [6]HARDOON D R,SZEDMAK S,SHAWE-TAYLOR J.Canonical correlation analysis:An overview with application to learning methods[J].Neural Computation,2004,16(12):2639-2664. [7]RASIWASIA N,PEREIRA J C,COVIELLO E,et al.A new approach to cross-modal multimedia retrieval[C]//ACM MM,2010:251-260. [8]ANDREW G,ARORA R,BILMES J,et al.Deep canonical correlation analysis[C]//ICML,2013:1247-1255. [9]FENG F,WANG X,LI R.Cross-modal retrieval with correspondence autoencoder[C]//ACM MM.2014:7-16. [10]ZHAN Y,YU J,YU Z,et al.Comprehensive distance-preserving autoencoders for cross-modal retrieval[C]//ACM MM.2018:1137-1145. [11]HE L,XU X,LU H,et al.Unsupervised cross-modal retrievalthrough adversarial learning[C]//ICME.2017:1153-1158. [12]CHUNG Y A,WENG W H,TONG S,et al.Unsupervisedcross-modal alignment of speech and textembedding spaces[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS’18).2018:7365-7375. [13]LI C,DENG C,LI N,et al.Self-super visedadversarial hashing networks fo rcross modal retrieval[C]//CVPR.2018:4242-4251. [14]WANG B,YANG Y,XU X,et al.Adversarial cross-modal re-trieval[C]//ACM MM,2017:154-162. [15]YAN S,XU D,ZHANG B,et al.Graph embedding and extensions:A general framework for dimensionality reduction[J].IEEE TPAMI,2006,29(1):40-51. [16]MORSING L H,SHEIKH-OMARO A,IOSIFIDIS A.Supervised domain adaptation:A graph embedding perspective and a rectified experimental protocol[J].arXiv:2004.11262,2020. [17]MOON H,PHILLIPSP J.Computational and performance as-pects of PCA-based face-recognition algorithms[J].Perception,2001,30(3):303-321. [18]YU S,LI S,CHEN D,et al.COCAS:A Large-Scale Clothes Changing Person Dataset for ReIdentification[C]//CVPR.2020:3400-3409. [19]SONG L,WANG C,ZHANG L,et al.Unsupervised domainadaptive re-identification:Theory and practice[J].Pattern Re-cognition,2020,102:107173. [20]ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-imagetranslation using cycle-consistent adversarial networks[C]//ICCV.2017:2223-2232. [21]FU Y,WEI Y,WANG G,et al.Self-similarity grouping:A simple unsupervised cross domain adaptation approach for person re-identification[C]//ICCV.2019:6112-6121. [22]ZHONG Z,ZHENG L,LUO Z,et al.Invariance matters:Exemplar memory for domain adaptive person re-identification[C]//CVPR.2019:598-607. [23]DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//CVPR.2005:886-893. [24]XIONG F,GOU M,CAMPS O,et al.Person re-identificationusing kernel-based metric learning methods[C]//ECCV.2014:1-16. [25]MATSUKAWA T,OKABE T,SUZUKIE,et al.Hierarchicalgaussian descriptor for person re-identification[C]//CVPR.2016:1363-1372. |
[1] | LI Dongyang, NIE Rencan, PAN Linna, LI He. UMGN:An Infrared and Visible Image Fusion Network Based on Unsupervised Significance MaskGuidance [J]. Computer Science, 2024, 51(6A): 230600170-5. |
[2] | HE Yifan, HE Yulin, CUI Laizhong, HUANG Zhexue. Subspace-based I-nice Clustering Algorithm [J]. Computer Science, 2024, 51(6): 153-160. |
[3] | CAI Jiacheng, DONG Fangmin, SUN Shuifa, TANG Yongheng. Unsupervised Learning of Monocular Depth Estimation:A Survey [J]. Computer Science, 2024, 51(2): 117-134. |
[4] | JING Yeyiran, YU Zeng, SHI Yunxiao, LI Tianrui. Review of Unsupervised Domain Adaptive Person Re-identification Based on Pseudo-labels [J]. Computer Science, 2024, 51(1): 72-83. |
[5] | XU Jie, WANG Lisong. Contrastive Clustering with Consistent Structural Relations [J]. Computer Science, 2023, 50(9): 123-129. |
[6] | LIANG Yunhui, GAN Jianwen, CHEN Yan, ZHOU Peng, DU Liang. Unsupervised Feature Selection Algorithm Based on Dual Manifold Re-ranking [J]. Computer Science, 2023, 50(7): 72-81. |
[7] | SHEN Yuancheng, BAN Rui, CHEN Xin, HUA Runduo, WANG Yunhai. Anomaly Detection Algorithm for Network Device Configuration Based on Configuration Statement Tree [J]. Computer Science, 2023, 50(11A): 230200128-10. |
[8] | XIE Zhuo, KANG Le, ZHOU Lijuan, ZHANG Zhihong. Clustering Method Based on Contrastive Learning for Multi-relation Attribute Graph [J]. Computer Science, 2023, 50(11): 62-70. |
[9] | WANG Bin, LIANG Yudong, LIU Zhe, ZHANG Chao, LI Deyu. Study on Unsupervised Image Dehazing and Low-light Image Enhancement Algorithms Based on Luminance Adjustment [J]. Computer Science, 2023, 50(1): 123-130. |
[10] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[11] | ZHANG Yu-xin, CHEN Yi-qiang. Driver Distraction Detection Based on Multi-scale Feature Fusion Network [J]. Computer Science, 2022, 49(11): 170-178. |
[12] | HOU Hong-xu, SUN Shuo, WU Nier. Survey of Mongolian-Chinese Neural Machine Translation [J]. Computer Science, 2022, 49(1): 31-40. |
[13] | LI Jin-xia, ZHAO Zhi-gang, LI Qiang, LV Hui-xian and LI Ming-sheng. Improved Locality and Similarity Preserving Feature Selection Algorithm [J]. Computer Science, 2020, 47(6A): 480-484. |
[14] | WANG Cheng-zhang, BAI Xiao-ming, DU Jin-li. Diffuse Interface Based Unsupervised Images Clustering Algorithm [J]. Computer Science, 2020, 47(5): 149-153. |
[15] | LUO Yue-tong,BIAN Jing-shuai,ZHANG Meng,RAO Yong-ming,YAN Feng. Detection Method of Chip Surface Weak Defect Based on Convolution Denoising Auto-encoders [J]. Computer Science, 2020, 47(2): 118-125. |
|