Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230600225-7.doi: 10.11896/jsjkx.230600225
• Artificial Intelligenc • Previous Articles Next Articles
LIANG Fang, XU Xuyao, ZHAO Kailong, ZHAO Xuanfeng, ZHANG Guijun
CLC Number:
[1]DILL K A,MACCALLUM J L.The protein-folding problem,50 years on[J].Science,2012,338(6110):1042-1046. [2]CHEUNG M S,CHAVEZ L L,ONUCHIC J N.The energylandscape for protein folding and possible connections to function[J].Polymer,2004,45(2):547-555. [3]CARLSON H A.Protein flexibility is an important component of structure-based drug discovery[J].Current Pharmaceutical Design,2002,8(17):1571-1578. [4]MOULT J,FIDELIS K,KRYSHTAFOVYCH A,et al.Critical assessment of methods of protein structure prediction:Progress and new directions in round XI[J].Proteins,2016,84(Suppl 1):4-14. [5]DENG H Y,JIA Y,ZHANG Y.Protein structure prediction[J].Acta Physica Sinica,2016,65(17):169-179. [6]ZHOU X,ZHENG W,LI Y,et al.I-TASSER-MTD:a deep-learning-based platform for multi-domain protein structure and function prediction[J].Nature Protocols,2022,17(10):2326-2353. [7]SCHWEDE T,KOPP J,GUEXN,et al.SWISS-MODEL:an automated protein homology-modeling server[J].Nucleic Acids Research,2003,31(13):3381-3385. [8]SONG Y,DIMAIO F,WANG R Y,et al.High-resolution comparative modeling with RosettaCM[J].Structure(London,England:1993),2013,21(10):1735-1742. [9]WEBB B,SALI A.Comparative Protein Structure ModelingUsing MODELLER[J].Current Protocols in Bioinformatics,2016,54:5.6.1-5.6.37. [10]XIA Y H,PENG C X,ZHOUX G,et al.A sequential niche multimodal conformational sampling algorithm for protein structure prediction[J].Bioinformatics(Oxford,England),2021,37(23):4357-4365. [11]ROHL C A,STRAUSS C E,MISURA K M,et al.Proteinstructure prediction using Rosetta[C]//Methods in Enzymology.Elsevier,2004:66-93. [12]ZHAO K L,LIU J,ZHOU X G,et al.MMpred:a distance-assisted multimodal conformation sampling for de novo protein structure prediction[J].Bioinformatics(Oxford,England),2021,37(23):4350-4356. [13]FENG Q,HOU M,LIU J,et al.Construct a variable-lengthfragment library for de novo protein structure prediction[J].Briefings in Bioinformatics,2022,23(3):bbac086. [14]XIE T Y,ZHOU X G,HU J,et al.Contact Map-based Residue-pair Distances Restrained Protein Structure Prediction Algorithm[J].Computer Science,2020,47(1):59-65. [15]ABRIATA L A,TAMÒ G E,DAL PERARO M.A further leap of improvement in tertiary structure prediction in CASP13 prompts new routes for future assessments[J].Proteins:Structure,Function,Bioinformatics,2019,87(12):1100-1112. [16]JUMPER J,EVANS R,PRITZEL A,et al.Highly accurate protein structure prediction with AlphaFold[J].Nature,2021,596(7873):583-589. [17]BAEK M,DIMAIO F,ANISHCHENKO I,et al.Accurate prediction of protein structures and interactions using a three-track neural network[J].Science,2021,373(6557):871-876. [18]SU H,WANG W,DU Z,et al.Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates[J].Advanced Science(Weinheim,Baden-Wurttemberg,Germany),2021,8(24):e2102592. [19]JONES D T,THORNTON J M.The impact of AlphaFold2 one year on[J].Nature methods,2022,19(1):15-20. [20]ALTSCHUL S F,MADDEN T L,SCHÄFFERA A,et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J].Nucleic Acids Research,1997,25(17):3389-3402. [21]ALTSCHUL S F,KOONIN E V.Iterated profile searches with PSI-BLAST-a tool for discovery in protein databases[J].Trends in Biochemical Sciences,1998,23(11):444-447. [22]SÖDING J.Protein homology detection by HMM-HMM com-parison[J].Bioinformatics(Oxford,England),2005,21(7):951-960. [23]WU S,ZHANG Y.MUSTER:Improving protein sequence profile-profile alignments by using multiple sources of structure information[J].Proteins,2008,72(2):547-556. [24]YANG Y,FARAGGI E,ZHAO H,et al.Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates[J].Bioinformatics(Oxford,England),2011,27(15):2076-2082. [25]BUCHAN D W A,JONES D T.EigenTHREADER:analogous protein fold recognition by efficient contact map threading[J].Bioinformatics(Oxford,England),2017,33(17):2684-2690. [26]ZHENG W,WUYUN Q,LI Y,et al.Detecting distant-homology protein structures by aligning deep neural-network based contact maps[J].PLoS Computational Biology,2019,15(10):e1007411. [27]WU S,ZHANG Y.LOMETS:a local meta-threading-server for protein structure prediction[J].Nucleic Acids Research,2007,35(10):3375-3382. [28]ZHENG W,ZHANG C,WU Y ,et al.LOMETS2:improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins[J].Nucleic Acids Research,2019,47(W1):W429-W436. [29]ZHENG W,QI Q G,WU Y ,et al.LOMETS3:integrating deep learning and profile alignment for advanced protein template recognition and function annotation[J].Nucleic Acids Research,2022,50(W1):W454-W464. [30]REMMERT M,BIEGERT A,HAUSERA,et al.HHblits:lightning-fast iterative protein sequence searching by HMM-HMM alignment[J].Nature Methods,2012,9(2):173-175. [31]MIRDITA M,VON DEN DRIESCH L,GALIEZ C,et al.Uniclust databases of clustered and deeply annotated protein sequences and alignments[J].Nucleic Acids Research,2017,45(D1):D170-D176. [32]ZHAO K,XIA Y,ZHANG F,et al.Protein structure and fol-ding pathway prediction based on remote homologs recognition using PAthreader[J].Communications Biology,2023,6(1):243. [33]THORNTON J M,LASKOWSKI R A,BORKAKOTIN.Al-phaFold heralds a data-driven revolution in biology and medicine[J].Nature Medicine,2021,27(10):1666-1669. [34]TUNYASUVUNAKOOL K,ADLER J,WU Z,et al.Highly accurate protein structure prediction for the human proteome[J].Nature,2021,596(7873):590-596. [35]FU L,NIU B,ZHU Z,et al.CD-HIT:accelerated for clustering the next-generation sequencing data[J].Bioinformatics(Oxford,England),2012,28(23):3150-3152. [36]FOX N K,BRENNER S E,CHANDONIA J-M.SCOPe:Structural Classification of Proteins—extended,integrating SCOP and ASTRAL data and classification of new structures[J].Nucleic Acids Research,2014,42(D1):D304-D309. [37]LI Z W,X L Q,ZHOU X G,et al.Multimodal Optimization Algorithm for Protein Conformation Space[J].Computer Science,2020,47(7):161-165. [38]SEEMAYER S,GRUBER M,SÖDING J.CCMpred-fast andprecise prediction of protein residue-residue contacts from correlated mutations[J].Bioinformatics(Oxford,England),2014,30(21):3128-3130. [39]DU Z,PAN S,WUQ,et al.CATHER:a novel threading algorithm with predicted contacts[J].Bioinformatics,2020,36(7):2119-2125. [40]SKOLNICK J,GAO M,ZHOU H,et al.AlphaFold 2:why itworks and its implications for understanding the relationships of protein sequence,structure,and function[J].Journal of Chemical Information,2021,61(10):4827-4831. [41]CONNELL K B,MILLER E J,MARQUSEE S.The folding tra-jectory of RNase H is dominated by its topology and not local stability:a protein engineering study of variants that fold via two-state and three-state mechanisms[J].Journal of Molecular Biology,2009,391(2):450-460. |
[1] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[2] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[3] | HOU Linhao, LIU Fan. Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks [J]. Computer Science, 2024, 51(6A): 230400110-6. |
[4] | HUANG Yuanhang, BIAN Shan, WANG Chuntao. Gaussian Enhancement Module for Reinforcing High-frequency Details in Camera ModelIdentification [J]. Computer Science, 2024, 51(6A): 230700125-5. |
[5] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[6] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[7] | LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container Lock Hole Recognition Algorithm Based on Lightweight YOLOv5s [J]. Computer Science, 2024, 51(6A): 230900021-6. |
[8] | HUANG Haixin, WU Di. Steel Defect Detection Based on Improved YOLOv7 [J]. Computer Science, 2024, 51(6A): 230800018-5. |
[9] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[10] | YANG Xiuzhang, WU Shuai, REN Tianshu, LIAO Wenjing, XIANG Meiyu, YU Xiaomin, LIU Jianyi, CHEN Dengjian. Complex Environment License Plate Recognition Algorithm Based on Improved Image Enhancement and CNN [J]. Computer Science, 2024, 51(6A): 220200162-7. |
[11] | SONG Zhen, WANG Jiqiang, HOU Moyu, ZHAO Lin. Conveyor Belt Defect Detection Network Combining Attention Mechanism with Line Laser Assistance [J]. Computer Science, 2024, 51(6A): 230800115-6. |
[12] | WU Chunming, LIU Yali. Method for Lung Nodule Detection on CT Images Using Improved YOLOv5 [J]. Computer Science, 2024, 51(6A): 230500019-6. |
[13] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
[14] | QIAO Hong, XING Hongjie. Attention-based Multi-scale Distillation Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300223-11. |
[15] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
|